F.Y.B.Sc.Paper I: Mechanics and Properties of Matter

SEM I Paper I	Mechanics and Properties of Matter	
Course Objec	tives	
• Explain one di	imensional motion and dependence of force on position, velocity and tim	ne
• Explain the tw	vo-dimensional motion like that of projectile motion.	
• Explain three	important properties of matter.	
Theory		
on position, velocity machine, Free fall ne equation of motion, r which depends on tim = Fo Sin($\omega t + \varphi$). Mot Brief review of simpl motion and neutral eq velocity - general de resistive force propor	in one dimension eral problem of one dimensional motion. Dependence of force in general and time. Motion under a constant force with illustrations-Atwood's ar the surface of the earth. Motion along a rough inclined plane. The momentum and energy conservation theorems. Motion under a force e-general approach to the solution. Illustration using force of the type F tion under a conservative force dependent on position, potential energy. the harmonic motion [Idea of first integral, energy integral, constant of pullibrium to be discussed]. Motion under damping force depending on pendence of resistive force on velocity. Motion in a medium with tional to first power of velocity [Ignoring gravity]. Body falling under medium near the surface of the earth.	14L
Motion of a charged ield. Motion of a cha	I particle in Electro-magnetic field (Only perpendicular field) particle in a uniform constant (1) electric field, (2) magnetic rged particle in a uniform constant electric field and magnetic field perpendicular directions. Lorentz force.	4L
-	nsion n plane polar coordinates [Equations Nos.3.72- 3.80 from Mechanics, and energy theorems. Plane and vector angular momentum theorems.	4L
Motion of a particle Projectile motion in a first power of velocity	non-resistive and resistive medium, resistive force proportional to the	4L
Properties of Matter		11L
bending moment, fle	Poisson's ratio and relationship between them. Bending of beams- exural rigidity. Cantilever (rectangular bar). Depression of a beam and loaded at the center. A vibrating cantilever. Torsion in a string- Torsional Pendulum.	
• •		4 L
	cular theory of surface tension. Relation between surface tension and of contact. Capillarity-rise of liquid in a capillary tube.	

Viscosity: Streamline flow, Turbulent flow, Critical velocity, Coefficient of viscosity, Poiseuille's	4 L
formula for flow of liquid through a capillary tube.	
Learning Outcome	
Learner will be able to	
 Apply the equation of motion to one or two dimensions of the system in order to understand kinematics of the body under the various conditions of applied force. Apply the knowledge in construction of beams, bridges etc, Apply knowledge in understanding the flow of liquid and surface tension applied on the surface of liquid. 	
the surface of liquid	
Reference Books 1.Introduction to Classical Mechanics, R. G. Takawale and P. S. Puranik, Tata McGraw-Hill (1997)	
 2.Properties of Matter, Brijlal and N. Subrahmanyam S. Chand (1999) 3.Mechanics, K. R. Symon, Addison Wesley (1971) 4.Berkeley Physics Course, Volume I, Mechanics, McGraw-Hill (1973) (C. Kittel, 	
 5.W. D. Knight, M. A. Rudderman, A. C. Helmhotz and B. J. Moyer) 6.Properties of Matter, Starling H. S, Mcmillian and Co (1961). 7.Mechanics, H.S.Hans and S.P.Puri, Tata McGraw-Hill (2003) 8.Mechanics, D.S.Mathur, S.Chand & Co. (2005) 	
Practical	
Experiments (minimum four)	
1 Fly wheel: Determination of frictional couple and moment of inertia of a flywheel 2. Projectile Motion (computer simulation)	
3. Cantilever : Determination of Young's modulus by vertical vibrations of a cantilever	
4. Torsional Pendulum : Determination of Rigidity Modulus of the material of a wire5. Jaeger's Method : Determination of Surface Tension	
6. Viscosity of a liquid by Poiseuilles method	
7. Bending of beams: determination of Young's modulus8: Capillarity: determination of Surface tension	

F.Y.B.Sc. Physics Paper II: ELECTRICITY

SEM I Paper II	ELECTRICITY	
Course Object	tives	
1. To use the co	oncept of current & voltage source in circuit analysis, apply network	
theorems to	relevant circuits.	
2. To explain re	sponse of LR and CR circuits to Dc and AC and to explain the design of	
resonant circ	cuits and filters.	
3. To illustrate	the use of choke as a watt less component	
4. To explain th	e theory of mutually coupled LR circuits	
•	e working of transformer & effect of loading.	
•	e operation of AC bridges and their applications	
<u>Theory</u> Circuit Analysis		12L
Concept of constant curr	ent and constant voltage source, Maxwell's cyclic current method for circuit theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer	121
Principle of non-inductiv	uctance of two parallel wires carrying equal current in opposite directions, re resistance coils, Self Inductance of co-axial cables, Mutual inductance, Inductance in series and parallel.	5L
-	ntainng L C and R to DC (transients) rrent in L-R circuit, Charging and discharging of capacitor in C-R circuit and	8L
Ballistic Galvanometer General theory of a susp Current sensitivity and v	pended coil ballistic galvanometer, Expression for charge, Figure of merit, oltage sensitivity.	4L
admittance, The j operato C-R circuits, Series and j	C-R circuits, Inductive and Capacitive reactance, impedance and or and vector or phasor method (including LR and LCR)A.C. applied to L- parallel resonance. Q factor and Bandwidth. Graphic representation of resistance, inductive reactance, capacitance reactance with frequency)	9L
Mutually Coupled L-R A.C. applied to mutually the secondary of a transfe	coupled L-R circuits. Reflected impedance. Transformers, Effect of loading	5L
		3L

General A.C. bridge. Maxwell's bridge. Maxwell's L/C bridge. De-Sauty's capacitance bridge. Wein's frequency bridge.

Learning Outcome

Learner will be able to :

- Students learn to appreciate and use network theorems for analysing complex electrical networks
- Students learn to analyse Dc and AC response of LR and CR circuits and use them in applications such as amplifiers and oscillators
- Students learn to design filter circuits such as Low Pass, High Pass and band Pass.
- Students learn to design a transformer.
- Students learn measurements using AC bridges.
- Students learn about related experiments to be conducted in Lab.

Reference Books

Books

Fundamentals of Electricity and Magnetism.

D. N. Vasudeva, S. Chand and Company Ltd. New Delhi (1995).

Electric Circuit and Theory.

F. A. Benson and D. Harrison. E.L.B.S. (1995).

Electricity and Magnetism.

J. Yarwood and J. H. Fewkes. University Tutorial Press (1991).

Electrical Technology, By Thereja

Electicity and Magnetism, Brijlal and Subramanian

Electrical Circuits : Siam Series

Practical

Experiments (minimum four)

1. Verification of Thevenin's and Norton's theorem

- 2. Response of LR and CR circuits to A.C. phasor diagrams
- 3. Step Response of RC circuit / SLR Circuit
- 4. L.D.R. Characteristics / and application like switch
- 5. De Sauty's Bridge and Maxwells L/C Bridge

6. LCR Series and parallel resonance – Resonant frequency, Q value and Bandwidth

7.Resistance of Mirror Galvanometer / Table Galvanometer by Shunting and Figure of Merit of Mirror Galvanometer and Determination of Current and Voltage Sensitivity

8.Electrical Simulation of LR,CR,LCR Circuits : Computer Simulation by PSPICE / Electronics work bench

F.Y.B.Sc. Physics Paper I: WAVES AND ACOUSTICS

SEM II Paper I WAVES AND ACOUSTICS	
Course Objectives 1. To explain waves and oscillations and wave propagations in a medium . 2. To explain basic properties of ultrasonic waves and generation detection and app	lications
of ultrasonic waves. 3. To explain Doppler effect in sound and problem solving. 4. To explain acoustics of buildings and optimization of reverberation using sabine's f	ormula .
5. To explain the design of musical scales.	
Theory	101
Waves and Oscillations Periodic oscillations and potential well, differential equation for harmonic oscillator and its solutions (case of harmonic oscillations), kinetic and potential energy, examples of simple harmonic oscillations, spring and mass system, simple and compound pendulum, torsional pendulum, bifilar oscillations, Helmholtz resonator.	18L
Superposition of two simple harmonic motions of the same frequency along the same line, interference, superposition of two mutually perpendicular simple harmonic vibrations of the same frequency, Lissajous figures, case of different frequencies.	
Oscillatory Motion in a Resistive Medium: Damped harmonic oscillator, Damped forced harmonic oscillator. Displacement and velocity, Resonance, Sharpness of resonance, Phase relationships, Energy consideration in a forced harmonic oscillator. Harmonic oscillator with an arbitrary applied force.	9L
Sound Velocity of longitudinal waves in fluids. Newton's formula for velocity of sound. Longitudinal vibrations in strings. Kundt's tube-determination of velocity of sound in a gas and in solids. Transverse vibrations in strings. Intensity level and Bel and Decibel. Production and detection of Ultrasonic waves and its applications. Doppler effect. Source and listener in relative motion. (Normal incidence only)	12L
Acoustics of Rooms and Musical Scales Reverberation of Sound, Reverberation time, Absorption coefficient, Sabine's formula for reverberation time (discussions only), Acoustic requirements of an auditorium. Musical interval, harmony, melody. Diatonic scale. Tempered scale. (only concepts)	6L
Learning Outcome	
 Learner will be able to Students learn and appreciate the relationship between oscillations and waves. Students learn to solve problems related to wave propagation in fluid medium and apply Newton's formula for calculation of wave velocity. 	
 Students learn to use Kundt's tube for determination of velocity of sound in fluids. Students learn to solve problems related to Doppler effect in sound. 	

Students learn acoustic design of an auditorium.	
• Students learn design of musical instruments.	
• Students learn about related experiments to be conducted in Lab.	
Reference Books	
Text book of Sound. D. R. Khanna and R.S. Bedi, Atma Ram, New Delhi (1994).	
Sound. F. G. Mee, Heinemann Ltd., London (1967)	
Practical	
Experiments (minimum four)	
1.Frequency of AC mains (Sonometer)	
2. Helmholtz Resonator : Determination of unknown frequency	
3. Lissajos Figures (as a demonstration exp)	
4. Coupled Oscillations: resonance pendulum	
5. Flat Spiral Spring: determination of elastic constants by vertical and torsional	
oscillations of a loaded spring	
6.Calculation of reverberation Time & absorption Coefficient of room/hall (Numerical)	
7.Angular Oscillations of a Bar – Bar Pendulum	
8. Bifilar suspension: determination of Moment of Inertia.	
9. Wave superposition : Computer Simulation	

F.Y.B.Sc. Physics Paper II: Optics

SEM II Paper II	Optics	
Course Objec		
Explain proper	ties and application of lenses	
• Explain the fu	ndamentals of optical phenomenon.	
Theory		
Refraction through t	he lenses	10L
	s, optical properties of lenses, thin lenses & thick lenses, Cardinal	
	stem, Co-axial system of two thin converging lenses. Aberrations	
	c aberrations in lenses (only conceptual), methods of minimizing	
1	c Aberrations. Introduction to eyepieces, Ramsden and Huygens	
eyepieces (construction	on and their cardinal points)	
Fundamentals of Ro	eflection and Refraction	2L
Refractive index and o	optical path, Fermat's Principle of least time, Derivation of the laws of	
reflection & refraction	n using Fermat's Principle	
		11L
Interference		111
	of wavefront & division of amplitude.	
	Formation of colors in thin film- reflected system, Transmitted system	
(only conceptual), we	edge shaped film, Newton's Rings and its application to determine	
	uid (Normal Incidence only)	
	chelson interferometer-its principle, working and its application to	
determine wavelength	and difference between two wavelengths	
		15L
Diffraction		
-	n, Fresnel and Fraunhoffer Diffraction, Division of cylindrical wave-	
1	strips, Fresnel's diffraction at straight edge (details) {Introduction of	
-	athur, 12.3-12.5} Fresnel's diffraction at rectangular aperture and	
•	ceptual). Fraunhoffer diffraction at single slit and double slit (details),	
	(Conceptual), Diffraction grating, width of principal maxima of plane	
power of telescope an	solving power of optical instruments: - Rayleigh's condition, Resolving	
Polarization	u granng	7L
	on, Plane of polarization, Polarization by reflection, Brewster's law,	
1 1	tion, Double refraction, uniaxial and biaxial crystals, Nichol's Prism,	
-	cally polarized light - Theory and analysis, Retardation plates - Quarter	
• •	wave plate, Optical activity, specific rotation, simple Polarimeter,	
Laurent's half shade p		
-		

Learning Outcome

Learner will be able to

- Apply knowledge in selecting correct lenses for different uses
- Apply knowledge to differentiate the spectra obtained from different phenomena

Reference Books

1.A text Book of Optics, N Subrahmayam and N.Brijlal, S. Chand & Company Ltd(1991) 2. Principles of Optics, B.K. Mathur, New Global Printing Press, Kanpur.

- 3. Optics, Ajoy Ghatak, Tata McGraw-Hill Publicashing Company Limited. (1977)
- 4. Fundamental of Optics, F.A.Jenkins and H.E. White, Tata McGraw-Hill Publishing Company Limited. (1981)

Practical

Experiments (minimum four)

- 1) Wedge Shaped film / Newton's Rings
- 2) Single Slit Diffraction
- 3) Brewster's Law
- 4) Diffraction Gratings
- 5) Cardinals points of Two lenses
- 6) Resolving Power of Telescope using Striped sheets
- 7) Prism Spectrometer : Determination of Prism angle, minimum angle of deviation and dispersive power
- 8) Optical Lever

S.Y.B.Sc. Physics Paper I: MECHANICS II

Durse Objectives: This course will provide students with : 1. Understanding of motion under the influence of a central force 2. Understanding of Kepler's Laws 3. Understanding of motion of a system of particles 4. Understanding of translational and rotational motion of a rigid body 5. Understanding of motion in continuous medium 6. Knowledge of corioli's and centrifugal force heory Iotion under a central force: quivalent one body problem, general features of motion, qualitative discussions of orbits ider inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, perbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations. Iotion of a system of particles: enter of mass coordinates, conservation of linear momentum, angular momentum energy,
 2. Understanding of Kepler's Laws 3. Understanding of motion of a system of particles 4. Understanding of translational and rotational motion of a rigid body 5. Understanding of motion in continuous medium 6. Knowledge of corioli's and centrifugal force Heory Iotion under a central force: quivalent one body problem, general features of motion, qualitative discussions of orbits and riverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, reperbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations. Iotion of a system of particles: 6L
 3. Understanding of motion of a system of particles 4. Understanding of translational and rotational motion of a rigid body 5. Understanding of motion in continuous medium 6. Knowledge of corioli's and centrifugal force Heory Iotion under a central force: quivalent one body problem, general features of motion, qualitative discussions of orbits ider inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, rperbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations.
 4. Understanding of translational and rotational motion of a rigid body 5. Understanding of motion in continuous medium 6. Knowledge of corioli's and centrifugal force heory Iotion under a central force: quivalent one body problem, general features of motion, qualitative discussions of orbits der inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, perbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations. Iotion of a system of particles: 6. Content of the state o
5. Understanding of motion in continuous medium 6. Knowledge of corioli's and centrifugal force heory Iotion under a central force: quivalent one body problem, general features of motion, qualitative discussions of orbits ader inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, perbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations. Iotion of a system of particles: 6L
6. Knowledge of corioli's and centrifugal force heory Iotion under a central force: quivalent one body problem, general features of motion, qualitative discussions of orbits ider inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, rperbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations. Iotion of a system of particles: 6L
heory Iotion under a central force: 13L quivalent one body problem, general features of motion, qualitative discussions of orbits 13L quivalent one body problem, general features of motion, qualitative discussions of orbits 13L ader inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, 13L perbolic orbits, classical scattering, definition of scattering cross section and angle of 14L attering, Rutherford's scattering cross section and its derivations. 6L
Initial force:13Lquivalent one body problem, general features of motion, qualitative discussions of orbits13Lider inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws,13Lperbolic orbits, classical scattering, definition of scattering cross section and angle of14Lattering, Rutherford's scattering cross section and its derivations.6L
quivalent one body problem, general features of motion, qualitative discussions of orbits oder inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, rperbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations.6L
Ider inverse square law force field. Nature of orbits, elliptical orbits, Kepler's Laws, rperbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations.6L
Perbolic orbits, classical scattering, definition of scattering cross section and angle of attering, Rutherford's scattering cross section and its derivations.6L
attering, Rutherford's scattering cross section and its derivations. 6L
Iotion of a system of particles:6L
enter of mass coordinates conservation of linear momentum angular momentum energy
ritique of conservation of laws, rockets, conveyor belts and planets. The collision problems,
e two body problem.
Ioving coordinate systems:6L
oving origin of coordinate system, rotating coordinate systems, laws of motion on the
tating earth, qualitative description of Foucault's pendulum, and Larmor's theorem.
igid bodies, Rotation about an axis: 6L
otation of an axis, Compound pendulum, equation of motion of a rigid body, calculation of
ntre of mass and moment of inertia.
otation of a rigid body: 7L
otion of a rigid body in space, Euler's equation of motion for a rigid body and qualitative
scussion of motion of a symmetrical top.
Techanics of continues media: 7L
quation of motion of a vibrating strings, normal modes of a vibrating string, wave
opagation along a string. Kinematics of moving fluids, equation of continuity, equation of
otion for an ideal fluid.
earning Outcome: At the end of the course learners will be able to:
Formulate the equations of motion for the motion in central force field
Understand the equivalent one body problem.
Understand and state Kepler's laws of planetary motion.
Solve problems related to the concepts of classical mechanics.
eferences:
Introduction to Classical Mechanics, R. G. Takawale and P. S. Puranik, Tata McGraw-
Hill (1997)
Mechanics, K. R. Symon, Addison Wesley (1971)
Weenanies, K. R. Symon, Addison Wesley (1771)
xperiments (minimum four)
Kater's pendulum,
Double pendulum,

3. Bifilar suspension

- 4. Log Decrement & Viscosity,
- 5. Frequency of AC mains (Sonometer)
- 6. Study of motion of a top or a gyroscope.
- 7. Study of damping of a bar pendulum under various kinds of damping mechanics.
- 8. Numerical solution of equation of motion using a personal computer/calculator.
- 9. Motion of a particle in a central force field using numerical analysis and calculator / PC

S.Y.B.Sc. Physics Paper II: ELECTRONICS

SEM III.Paper II	ELECTRONICS	
Course Objectives.	This course will provide students with knowles	~
v	Ĩ	
-	edge of basic devices such as diodes, transisto	rs, thermister etc.
	various circuits such as rectifiers, amplifiers.	
Understand th	e effect of temperature on performance of d	vices such as transistors.
4. Device metho	ds for effective performance of these devices	under various conditions.
5. Apply them to	solve various circuit problems.	
Гheory		
Rectifiers and Regulato		[10] 10
unction diodes witho Rectification efficiency	stics of Junction diode, Half wave, Full wave a ut and with capacitive filters. Percentage regu . Zener diode characteristics and its use as a ics and its use in A.C. voltage regulation.	ation, Ripple factor and
Transistors.		[4] 4L
Basic configurations of	transistors, Transistor characteristic in CE and elation, Leakage current in transistors.	• •
Basic Amplifier Charac	teristics.	[5] 5L
Current gain, Voltage g	ain, Power gain, Input resistance, Output resistar rations, Decibel , Frequency response, Amplifier b	ce, Conversion efficiency,
C-E amplifier: Class Graphical analysis, Effe Phase relationship betw	ct of adding A.C. load, Input and Output resistan	[6] e, Conversion efficiency,
Fransistor Biasing. Bias stability, Stability fa	actor, Different methods of biasing, Biasing comp	[6] nsation.
ffect on negative feed listortion. Positive feed	edback, Voltage and current feedback, series and back on gain, frequency response, input and outp Iback, Barkhausen criterion for oscillations, Phase k circuit, Hartley oscillator and Colpitts oscillator	t resistance and
offset currents, Input ar	on Amplifiers. ier, OP-Amp characteristics, Input and Output ir nd output offset voltages. Differential and Commo ng , Non Inverting amplifier and Difference amplif	mode gains, CMRR, Slew

Learning Outcome: At the end of the course learners will be able to:

- 1. To gain knowledge of basic devices such as Diodes, Transistors, Thermister and Operational amplifier.
- 2. Apply them to various circuits.
- 3. Understand the effect of temperature on devices such as transistors.
- 4. Improvise effective methods for performance of these devices under various conditions.
- 5. Apply them to solve various circuit problems.
- 6. Understand the use of Operational amplifiers in Inverting and Non-Inverting amplifiers, adder and subtractor circuits.

References:

Electronic Principles – A.P.Malvino TMH 5th edition 1996.

Electronics Devices and Circuits An Introduction- Allen Mottershed 3rd edition PHI 1997 Intergrated electronics-Millman and Halkias TMH 1972

Basic Electronics and Linear Circuits-Bhargava, Kulshrestha and Gupta. TMH

Op-amp and Linear Intergrated Circuits- Ramakant Gayakwad PHI

Experiments (minimum four)

- 1.) Half wave and Full wave rectifier using Junction Diode, Load regulation characteristics.
- 2) Bridge rectifier with capacitor filter- Ripple factor using CRO.
- 3) OP-Amp: Characteristics Input and Output impedance.
- 4) OP-Amp: Inverting and Non-inverting amplifier.
- 5) Zener Diode Regulation.
- 6) Colpitts Oscillator./ Wein's Bridge Oscillator.
- 7) C.E. Amplifier. Gain v/s Load, Input and Output Impedance.
- 8) C.E. Amplifier. Fequency response with and without negative feedback. Calculation of Gain Bandwidth product.

S.Y.B.Sc. Physics Paper I: HEAT & THERMODYNAMICS

S.Y.B.Sc. Physics Paper I: HEAT & THERMO		
SEM IV paperI Heat & Thermodynamics	Theory & Practicals	5
 Course Objectives: This course will provide students with 1. Understanding of basic principles of kinetic theory of gases. 2. Knowledge of zeroth, first and second law of thermodynamics. 3. Discussion of Andrew's and Amagat's experiment which explands. 3. Understanding of concept of entropy. 	in behavior of real gases.	
Theory		
Kinetic theory of gases. Review of Kinetic Theory of gases, Average kinetic energy of a freedom. Law of equipartition of energy and its application to spec free path: Zeroth and first order approximation. Transport phenom momentum and matter. Brownian motion: Einstein's equation, Det number.	cific heats of gases. Mean nena: transport of energy,	8L
Behavior of real gases.		7L
Deviation from a perfect gas behaviour. Discussion of results of CO_2 and Amagat's experiment. Critical constants. Van der W Expression for Van der Waals' constants. Reduced equation of state temperature and critical temperature.	Vaals' equation of state.	
Thermodynamics.		8L
Zeroth and First law of Thermodynamics.		υL
Basic concepts of thermodynamics: Thermodynamic system, Ther Thermodynamic equilibrium, and Thermodynamic processes. Zero thermodynamics and concept of temperature. Internal energy and I thermodynamics. Relation between pressure, volume and temperat Work done in isothermal and adiabatic processes. Path dependence	oth law of First law of ture in adiabatic process.	
Second law of Thermodynamics. Reversible and irreversible processes. Carnot's cycle. Second Efficiency of heat engines. Carnot's theorem. Latent heat equation Thermodynamic scale of temperature, its identity with perfect gas	IS.	8L
Entropy.	seule.	14L
Entropy as a Thermodynamic variable. Entropy change in reprocesses. Temperature - Entropy diagram of Carnot's cycle. Hentropy of a mixture of gases. Physical significance of Entropy: Energy, Entropy and molecular disorder. Entropy and Second I Impossibility of attaining Absolute Zero (Third law of Thermodynamic Relations and its applications.	Entropy of a perfect gas. Entropy and Unavailable Law of Thermodynamics.	171
Learning Outcome: At the end of the course learners will be able	e to:	
1. Understand the kinetic theory of gases.		
2. Derive an expression for average kinetic energy of a gas molecu	ıle.	
3. Derive an equation for Brownian motion.		
4. Obtain Van der Waal's equation of state.		
5. Discuss the zeroth, first and second law of thermodynamics.		
6. Understand the concept of entropy.		

Text Books/References

Treatise on heat - M.N. Saha and B.N. Shrivastava, The Indian Press(1965) Thermal Physics – S.C. Garg, R.M. Bansal and C. K. Ghosh, TMH (1993) Thermodynamics – J.K. Roberts and A.R Miller , E.L.B.S. (1960) Text Book of Heat – G.R. Noakes, Mcmilan & Co(1960) Thermodynamics - William C .Reynolds (1968) Heat and Thermodynamics – M.W. Zemansky and R.H. Ditman, McGraw Hill (1997)

Experiments (minimum four)

1) Resistance Thermometry

- 2) Constant volume and constant pressure air thermometers
- 3) Thermister characteristics
- 4) Study of thermocouples for temperature measurements
- 5) Study of Brownian motion
- 6) Measurement of thermal conductivity of poor conductors

S.Y.B.Sc. Physics Paper II: MODERN PHYSICS

SEM IV Paper II	MODERN PHYSICS	Theory & Practical	S
Course Objectives:	At the end of the course, students will b	e able to:	
1. Determine t	he e/m for a charged particle.		
	concept of atomic model and apply it to d	etermine the energy levels fo	or
		even in the energy levels is	
a given gas.			
	typical crystal structures and determine t	heir structure using X-	
ray diffractio			
4. Define lasers	s, classify the different types of lasers and	apply them to optic fibres	
and holograp	phy		
Theory			
Electrons, Nucleus and A			4 L
	gh gases, Determination of e/m for cathode theory of nuclear of the atom, Qualitative d		
•	sses, Energy and mass units.	iscussion of alpha scattering	
experiment, ritornie mas	ses, Energy and mass ands.		
Brief review of Atomic r	models:		5L
Review of Bohr's Hydr	rogen atom, Frank-Hertz experiment and a	atomic energy levels, Bohr-	
Sommerfeld model-atte	mpt to explain fine structure, Finite nuclear r	nass model. Isotope effect –	
variation of Rydberg con	nstant for different isotopes, Bohr's correspor	idence principle.	
Atomic Physics:			4 L
	s: Thomson's positive ray analysis, Demp	oster's Mass spectrometer,	
Bainbridge Mass spectro Particle Accelerators:	Jgraph.		2L
Linear accelerator and	Cyclotron		4 L
Crystal Structure:			3L
·	anes and Miller indices, unit cells, typical crys	tal structures	01
· · · · ·			
X-rays:			
			5L
Hunt's law Wave natur	or, Continuous X-ray spectra and its depend	-	5L
	re of X-rays – Laue's pattern, Diffraction of >	(-rays by crystal Bragg's law,	5L
		(-rays by crystal Bragg's law,	5L
	re of X-rays – Laue's pattern, Diffraction of >	(-rays by crystal Bragg's law,	5L
Bragg single crystal spec	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple	(-rays by crystal Bragg's law,	
Bragg single crystal spec	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple agnetic radiation:	K-rays by crystal Bragg's law, e cubic crystal.	
Bragg single crystal spec Properties of electroma Qualitative discussion	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple	(-rays by crystal Bragg's law, e cubic crystal. , Brief review of the light	
Bragg single crystal spec Properties of electroma Qualitative discussion phenomenon that dem	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple agnetic radiation: of Radiation from an accelerated charges	K-rays by crystal Bragg's law, e cubic crystal. , Brief review of the light on, Photoelectric effect and	
Bragg single crystal spec Properties of electroma Qualitative discussion phenomenon that dem Compton effect – observ	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple agnetic radiation: of Radiation from an accelerated charges constrates wave nature, Black Body Radiation	K-rays by crystal Bragg's law, e cubic crystal. , Brief review of the light on, Photoelectric effect and uations and failure of classical	
Bragg single crystal spec Properties of electroma Qualitative discussion phenomenon that dem Compton effect – observ physics to explain the sa	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple agnetic radiation: of Radiation from an accelerated charges nonstrates wave nature, Black Body Radiatio vation, description, derivations of relevant equ	K-rays by crystal Bragg's law, e cubic crystal. , Brief review of the light on, Photoelectric effect and uations and failure of classical	101
Bragg single crystal spec Properties of electroma Qualitative discussion phenomenon that dem Compton effect – observ physics to explain the sa Compton effect. LASERS:	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple agnetic radiation: of Radiation from an accelerated charges nonstrates wave nature, Black Body Radiatio vation, description, derivations of relevant equ ame. Experimental verification of the Photoe	K-rays by crystal Bragg's law, e cubic crystal. , Brief review of the light on, Photoelectric effect and uations and failure of classical lectric effect by Millikan and	5 L 10 I 12L
Bragg single crystal spec Properties of electroma Qualitative discussion phenomenon that dem Compton effect – observ physics to explain the sa Compton effect. LASERS: Purity of a spectral line, 0	re of X-rays – Laue's pattern, Diffraction of X ctrometer Analysis of crystal structure - simple agnetic radiation: of Radiation from an accelerated charges nonstrates wave nature, Black Body Radiatio vation, description, derivations of relevant equ	K-rays by crystal Bragg's law, e cubic crystal. , Brief review of the light on, Photoelectric effect and uations and failure of classical lectric effect by Millikan and coherence, Eienstein's A and	101

emission, Ruby lasers, He-Ne laser, semiconductor laser, Carbon dioxide laser, Pulsed Nitrogen,	
Applications of lasers in Medicine, Industry and Science. Holography: Construction of holograms,	
Principle and application.	
Optical fibres: Basic principle, Optical fiber communication, Losses in Optical fibres.	
Learning Outcome: At the end of the course learners will be able to:	
7. Understand the concept of Lorentz Force and apply it to the motion of charged	
particles in electric and magnetic fields.	
8. Understand the design and working of particle accelerators and mass spectrometers.	
9. Appreciate the concept of quantization of energy levels by studying Frank-Hertz	
experiment.	
10. To define crystalline and amorphous solids.	
11. To determine miller indices and calculate the "d" spacing of the crystal	
12. Determine charge to mass ratio of electrons by using Thomson's method.	
13. Appreciate theory of the concept of Modern physics and also study relevant	
experiments.	
14. Apply the concepts of Modern Physics to solve problems and to perform experiments.	
Text Books/References	
1) Perspectives of Modern Physics, Arthur Beiser, 5 th Edition, McGraw Hill	
(1995).	
2) H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics,V	
Edition, Chapman and Hall	
3) J.B.Rajam, Atomic Physics, S.Chand and Company ltd.	
4) Introduction to Modern Physics, F.K. Richtmyer, E.H.Kennord, J.N. Cooper	
(6th Ed.)	
5) Optics, A. Ghatak, Tata McGraw-Hill, 2 nd Edition (1993).	
6) Laser: Theory and Applications, K. Thyagrajan and A. Ghatak McMillan	
(1987)	
7) Optical Electronics, K.Thyagarajan and A.Ghatak, Cambridge University	
Press (1997)	
8) LASERs and Non-linear optics, B.B.Laud, Wiley Eastern (1985)	
Experiments (minimum four)	
1. Laser based experiment	
•	
2. Laser based experiment (with one kit several experiments can be done, only two are suggested	
assuming one kit per college and two sets of experiments in the semester).	
assuming one kit per college and two sets of experiments in the semester).3. X-ray emission (characteristic lines of copper target) – calculation of wavelength and energy	
 assuming one kit per college and two sets of experiments in the semester). X-ray emission (characteristic lines of copper target) – calculation of wavelength and energy and assigning transitions. 	
 assuming one kit per college and two sets of experiments in the semester). X-ray emission (characteristic lines of copper target) – calculation of wavelength and energy and assigning transitions. Calculation of lattice constant by of Copper – x-ray diffraction pattern is given and student 	
 assuming one kit per college and two sets of experiments in the semester). X-ray emission (characteristic lines of copper target) – calculation of wavelength and energy and assigning transitions. Calculation of lattice constant by of Copper – x-ray diffraction pattern is given and student calculates, d-spacing, miller indices and lattice constant. 	

T.Y.B.Sc. Physics Paper I : ELECTRONICS

SEM V Paper I Electronics	
Course Objectives	
At the end of the course, students will be able to:	
1. Understand the concept of transistor.	
2. Apply the concept of transistor as a switch in switching applications such as	
multivibrator circuits.	
3. Convert Binary to decimal numbers and vice-versa.	
4. Understand the basic function of logic gates and their applications.	
Theory	
Transistors Multivibrators. Transistor as a switch, switching times, Multivibrators – Astable, Monostable, Bistable and Schmitt Trigger.	6L
Field Effect Transistors. Basic structure of the JFET, Principles of operation, Characteristic curves and parameters, Common source amplifiers, Common gate amplifier (only qualitative discussion), The MOSFET Depletion Mode and Enhancement mode, Dual-Gate MOSFET. FET Phase shift oscillator, FET as VVR and its applications in Attenuator, AGC and Voltmeter circuits.	11L
Applications of OP-AMP. Active diode circuits, Intergrator, Differentiator, Comparator, Window comparator, Schmitt Trigger, Waveform generator –Square wave, Triangular and Ramp Generator and monostable.	9L
Timers:	a
The 555 Timer, Basic concept, 555 block diagram, Monostable, Astable, Bistable, Schmitt Trigger and Voltage controlled oscillator (VCO) using 555 timer.	6L
	16L
Number system Logic.	
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic	
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra,	
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits, Sum of Products	
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits, Sum of Products methods and Product of Sum methods of representation of logical functions. Half adder and	
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits, Sum of Products methods and Product of Sum methods of representation of logical functions. Half adder and Full adder, Multiplexer and Demultiplexer.	
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits, Sum of Products methods and Product of Sum methods of representation of logical functions. Half adder and Full adder, Multiplexer and Demultiplexer. Logic families – DTL, TTL Standard TTL NAND gate, Schottky TTL, ECL OR and NOR gate, MOS (inverter,	
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits, Sum of Products methods and Product of Sum methods of representation of logical functions. Half adder and Full adder, Multiplexer and Demultiplexer. Logic families – DTL, TTL Standard TTL NAND gate, Schottky TTL, ECL OR and NOR gate, MOS (inverter, NAND and NOR gates) and CMOS (inverter, NAND and NOR gates)	12L
Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits, Sum of Products methods and Product of Sum methods of representation of logical functions. Half adder and Full adder, Multiplexer and Demultiplexer. Logic families – DTL, TTL Standard TTL NAND gate, Schottky TTL, ECL OR and NOR gate, MOS (inverter, NAND and NOR gates) and CMOS (inverter, NAND and NOR gates) Flip Flops and Counters. Basic RS FF, Clocked RS FF, JK FF, D-type and T-type FF, Master Slave Concept, Shift	12L
Digital Electronics: Number system Logic. Binary number system, Binary to Decimal and Decimal to Binary conversion, Basic logic gates, OR, AND, NOR, NAND, and EX-OR gates. De Morgan's Law's, Boolean Algebra, NAND and NOR gates as universal building blocks in logic circuits, Sum of Products methods and Product of Sum methods of representation of logical functions. Half adder and Full adder, Multiplexer and Demultiplexer. Logic families – DTL, TTL Standard TTL NAND gate, Schottky TTL, ECL OR and NOR gate, MOS (inverter, NAND and NOR gates) and CMOS (inverter, NAND and NOR gates) Flip Flops and Counters. Basic RS FF, Clocked RS FF, JK FF, D-type and T-type FF, Master Slave Concept, Shift register (shift left, shift right) Schmitt trigger, Applications of FF's in counters, binary ripple counter, Modulus of counter (3,5) BCD Decade Counter, Cascade BCD Decade	12L

counters, Principle of digital counter digital voltmeter, and digital clock. Encoders and decoders

Learning Outcome

Learner will be able to :Describe the function of the transistor as a switch and explain its application in switching circuits.

- Describe the application of operational amplifiers in diode circuits and circuits such as Integrator and Differentiator.
- Define the Field effect transistor, its types and differences.
- Explain the application of FET in circuits such as AGC, VVR.
- Explain the use of Op-amp as a comparator and window comparator and hence their applications in wave-shaping circuits.
- Describe the working of a basic timing circuit using the IC 555 and its applications in multivibrator circuits.
- Understand the number logic system using binary numbers and their use in basic logic gates.
- Explain the working of a basic flip-flip and its applications in digital circuits such as counters.

Reference Books

Electronic Principles: A.P. Malvino TMH 5th edition 1996. Digital Principles and Applications: Malvino and Leach TMH 4th edition 1986. Electronics Devices and Circuits An Introduction: Allen Mottershed PHI 1997 Intergrated Electronics: Millman and Halkias TMH 1972 Electronic Devices and Circuits: Millman and Halkais Mc Graw Hill 1967 Modern Digital Electronics: R. P. Jain TMH 3rd edition 2003. Principles of Electronics: V.K.Metha S.Chand & Company 8th edition 2003.

T.Y.B.Sc. Physics Paper II : WAVE MECHANICS

SEMV Paper II	WAVE MECHANICS	
Course Object 1. To illustrate	L tives dual nature of matter and radiation and importance of De-Broglie hypo	thesis in
development	of quantum mechanics	
2. To explain e	xperimental evidence of De-Broglie hypothesis.	
•	vave group HUP and correspondence principle and Schrodinger's equation	ion.
-	pplications of STIE	
-	uantum mechanical aspects of molecular spectra, alpha decay and tunne	diode
Theory	uantum meenamear aspects of molecular spectra, alpha decay and tunic	n uloue.
Broglie's hypothesis, The Demonstration of wav	Review of the Bohr's postulate about stationary states in the light of De e concept of quantum (particle) nature of radiation. e nature of particles-Davisson Germer experiment, electron of G.P.Thomson, Dual nature of radiation/matter. Complimentary in	10L
group, Wave packet an	e Broglie wave, Velocity of De Broglie wave, Construction of a wave nd its motion in one dimension., Group velocity and particle velocity, ation of the wave function, probability concept, Acceptable wave on of wave function.	6L
Derivation of Heisenb thought experiments (ainty Principle: echanics to predict the physical state of a particle/system accurately. erg Uncertainty principle relation for p and x, E and t. Illustration by (-ray microscope, single slit diffraction and double slit experiment), hberg Uncertainty principle.	6L
time dependent wave of from solutions in term operators & their nece expectation values of r postulates of wave me	e Equation: he wave equation on a stretched string, Derivation of Schroedinger's equation, Postulates of Quantum mechanics, Extraction of information s of expectation values of physical variables/observable. Definition of essity, Eigen value equation, Commutation relations, Expression for nomentum and energy in terms of operators. Operators as fundamental chanics and establishment of Schroedinger's time dependent equation. states. Schroedinger's time independent equation	13L
Application of Schrodin 1)Free particle 2) One-d values. Show how prob and <px>.3) Particle in o finite square well poten</px>	ger's Steady State Equation: imensional infinite square well potential: Energy eigen functions and eigen ability distribution changes as the quantum number m. Calculation of <x> ne and three dimensional box, Concept of degeneracy 4) One dimensional tial placed symmetric to origin, Energy eigen values and functions. Parity One dimensional finite square step potential of height Vo: Comparison of</x>	25L

Learning Outcome Learner will be able to • Students learn about complimentary nature of matter and radiation. • Solve problems using Schrodinger's equation. • Calculate probabilities of particle location and expectation values using quantum mechanical tools • Learn about thought experiments and quantum mechanical arguments in their support • Learn about evolution of modern physics Reference Books Perspectives of Modern Physics, Arthur Beiser, 5th Edition, McGraw Hill (1995) Introduction to Modern Physics, F.K. Richtmayer, E.H.Kennard, J.N. Cooper (6th Ed.) Introduction to Atomic Physics, H.E.White H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics,V Edition, Chapman and Hall Introduction to Quantum Mechanics, P.T. Matthews, TATA McGRAWL-HILL Pub. Ltd.	classical and quantum mechanical results for particle energy E>Vo and E <vo. &="" 6)="" 7)="" alpha="" and="" barrier="" decay,="" dimensional,="" diode="" discussion="" effect,="" eigen="" energy="" functions,="" harmonic="" it,="" its="" microscope.="" of="" one="" oscillator-="" penetration="" point="" potential="" qualitative="" rectangular="" scanning="" significance.<="" th="" through="" tunnel="" tunneling="" value="" zero=""><th></th></vo.>	
 Students learn about complimentary nature of matter and radiation. Solve problems using Schrodinger's equation. Calculate probabilities of particle location and expectation values using quantum mechanical tools Learn about thought experiments and quantum mechanical arguments in their support Learn about evolution of modern physics Reference Books Perspectives of Modern Physics, Arthur Beiser, 5th Edition, McGraw Hill (1995) Introduction to Modern Physics, F.K. Richtmayer, E.H.Kennard, J.N. Cooper (6th Ed.) Introduction to Atomic Physics, H.E.White H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics, V Edition, Chapman and Hall	Learning Outcome	
 mechanical tools Learn about thought experiments and quantum mechanical arguments in their support Learn about evolution of modern physics Reference Books Perspectives of Modern Physics, Arthur Beiser, 5th Edition, McGraw Hill (1995) Introduction to Modern Physics, F.K. Richtmayer, E.H.Kennard, J.N. Cooper (6th Ed.) Introduction to Atomic Physics, H.E.White H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics, V Edition, Chapman and Hall 	• Students learn about complimentary nature of matter and radiation.	
Learn about evolution of modern physics Reference Books Perspectives of Modern Physics, Arthur Beiser, 5th Edition, McGraw Hill (1995) Introduction to Modern Physics, F.K. Richtmayer, E.H.Kennard, J.N. Cooper (6th Ed.) Introduction to Atomic Physics, H.E.White H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics, V Edition, Chapman and Hall	 Learn about thought experiments and quantum mechanical arguments in their	
Perspectives of Modern Physics, Arthur Beiser, 5th Edition, McGraw Hill (1995) Introduction to Modern Physics, F.K. Richtmayer, E.H.Kennard, J.N. Cooper (6th Ed.) Introduction to Atomic Physics, H.E.White H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics,V Edition, Chapman and Hall		
Introduction to Modern Physics, F.K. Richtmayer, E.H.Kennard, J.N. Cooper (6th Ed.) Introduction to Atomic Physics, H.E.White H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics,V Edition, Chapman and Hall	Reference Books	
	Introduction to Modern Physics, F.K. Richtmayer, E.H.Kennard, J.N. Cooper (6th Ed.) Introduction to Atomic Physics, H.E.White H.Semat and J.R.Albright, Introduction to Atomic and nuclear Physics,V Edition, Chapman and Hall	

T.Y.B.Sc. Physics Paper III: Nuclear Physics

SEM V Paper III	Nuclear Physics	
Course Object		
• Explain propert		
	ctivity, nuclear reactions	
• Explain differen	nt methods to detect nuclear radiation	
Theory		
Properties of the Nuc	leus:	4 L
-	e nucleus, Mass/size (radius), Nuclear spin, Magnetic dipole moment, noment, Parity. Packing fraction, Binding energy, B.E versus A plot, forces.	
	f Nuclear Forces. Meson theory of Nuclear forces, Estimation of the Heidelberg's Uncertainty Principle, Yukawa potential.	8L
The law of Radioactiv radioactive transforma	vity Decay, Mean life, Half life & Decay constant. Successive tion (A-B-C) type, Ideal transient & secular equilibrium. Radioactive artificial radioactivity.	7L
The law of Radioactive radioactive transformation series, Carbon dating, a Radioactive decay: Alpha decay, Velocity fine structure, short ra theory of alpha decay. Beta Decay: Types of spectrum & difficultie Beta decay, (Qualitation	tion (A-B-C) type, Ideal transient & secular equilibrium. Radioactive artificial radioactivity.	7L 10L
radioactive transformation series, Carbon dating, a Radioactive decay: Alpha decay, Velocity fine structure, short ra theory of alpha decay. Beta Decay: Types of spectrum & difficultie Beta decay, (Qualitati Internal Conversion, N	tion (A-B-C) type, Ideal transient & secular equilibrium. Radioactive artificial radioactivity.	10L
The law of Radioactive radioactive transformation series, Carbon dating, a Radioactive decay: Alpha decay, Velocity fine structure, short ratheory of alpha decay. Beta Decay: Types of spectrum & difficultie Beta decay, (Qualitati Internal Conversion, N Nuclear models: Liquid drop model of drop & a nucleus. Wite Mass Parabolas, Predi Spontaneous & induce	tion (A-B-C) type, Ideal transient & secular equilibrium. Radioactive artificial radioactivity.	

Nuclear Energy:	7L
Neutron induced fission, Mass yield in an asymmetrical fission, Energy released in the fission	
of U-235. Fission chain reaction, Principle of a nuclear reactor, Neutron cycle in a thermal	
nuclear reactor (The four factor formula), Principle of a breeder reactor	
Detection of Nuclear Radiation:	4L
Ionization chamber, Proportional counter, Geiger Muller counter, Photographic Emulsions.	
Learning Outcome	
Learner will be able to	
• Apply knowledge in distinguishing exothermal and endothermal process	
• Explain the process in a nuclear reactor	
• Apply the knowledge in detecting the radiations	
Reference Books	
1.Nuclear Physics, Irving Kaplan, Narosa Publishing House	
2.Perspectives of Modern Physics, Arthur Beiser, 5th Edition, McGraw Hill (1995)	
3.Introduction to Modern Physics, F.K. Richtmyer, E.H. Kennord, J.N. Cooper (6th Ed.)	
McGraw Hill (1997).	
4.Nuclear Physics – S.B. Patel – TMH	

T.Y.B.Sc. Physics Paper IV: Electromagnetic Theory I

SEMV Paper IV	Electromagnetic Theory I	Theory
*	his course will provide students with :	v
1. Adequate know	ledge of mathematical physics and mathema	tical skills which is required
to understand a	nd solve problems of Electromagnetic Theor	y and other branches of
Physics		
2. Understanding	of concept of electric force, electric field and	potential due to stationary
charges.		
	liscrete and continuous charge distributions.	
	of Gauss' Law and its applications.	
	different techniques to solve electrostatic pro	
-	the concept of polarization and electrostatic I	henomena in dielectric
medium.		
Theory		
0	f revision of basic vector operations)	15L
	:- scalar fields, vector fields, the time deriv	· •
	nction, Divergence, curl and Lplacian opera	or with physical
significance.		
-	unctions :- Line integrals, surface integrals, v	-
	lue to Gauss, Curl Theorem due to Stoke's ,G	
theorems with proof).	Differential vector Identities with proof. [Ha	rper]
T I		10L
Electrostatics	ria Field Continuous charge distribution fiel	
	ric Field, Continuous charge distribution, fiel Griffiths], the electric dipole, multipole exp	
	rd], The Dirac Delta function [Griffiths].	
	electrostatic problems	8L
-	tial, Poisson's equation, Laplace's equation :	
	aplace's equation in spherical co-ordinates (
	uniform electric field, electrostatic images,	
conducting sphere. [Re		
Electric Fields in ma		10L
	side of a dielectric dielectric medium, electr	
	ectric, the electric displacement vector, electr	
-	undary conditions on the field vectors, Bound	1 1
	ielectric sphere in a uniform electric field.[R	• •
Microscopic Theory of	of Dielectrics	8L
Molecular field in a die	electric, induced dipoles, A simple model, po	ar molecules, Langevin-
Debye formula, perma	nent polarization, ferroelectricity.	
Work and Energy in	electrostatics	9L
The work done to mov	ve a charge, the energy of a point charge distr	bution, the energy of
-	tribution, Energy density of an electric field.	Basic properties of
	narges, capacitors. [Griffiths,Reitz]	
BOOKS :-		
	hematical Physics, Charlie Harper,	
	ctrodynamics, David Griffiths, Prentice Hall	of India
Ltd,New Delhi (199	·	
3. Foundations of Elec	tromagnetic Theory, Reitz and Milford, Add	1810n-

Wesley Publishing Company.

4. Electricity and Magnetism , Mahajan and Rangawala , tata McGraw-Hill Publishing Company Ltd.

Learning Outcome: At the end of the course, learners will be able to:

- 1 Define scalar field & vector field and 'del' operator.
- 2. Understand vector differentiation and rules of vector differentiation.
- 3 Learn the concepts of directional derivatives, gradient of a scalar function, divergence and curl of a vector function and apply them to physical problems.
- 4. Solve problems related to vector calculus.
- 5 Express laplacian operator in cartesian, spherical and cylindrical co-ordinate systems.
- 6 Learn basic laws of electrostatics and define electric field and potential due to discrete and continuous charge distributions.
- 7 Understand Gauss' Law and its applications.
- 8. Learn different techniques to solve electrostatic problems.
- 9. Understand the concept of polarization and electrostatic phenomena in dielectric medium.

10 Find dielectric constant and absolute capacitance experimentally.

T.Y.B.Sc. Physics Paper V: PRACTICAL COURSE

SEMV Paper V	PRACTICAL COURSE	
Course Objectives:	· · · ·	
1. To guide stude	nts to perform at least a minimum of 8 experiments from the syllabus	s
Practicals		
	Practical Paper I	3HRS
		Per
Experiments. (Minimu	ım eight).	expt
 2) Study of Schmitt tri 3) F.E.T Characteristic 4) F.E.T Common Sou 5) OP-amp as a bridge 6) Regulated power su 7) Study of IC 555 as Controlled Oscillate 8) Analog and Digital 9) Verification of De I 10) NAND and NOR 11) Binary addition- H 	cs. arce Amplifier. amplifier and its application in temperature measurement. apply using IC 723. Astable, Monostable, Bistable Multivibrator and its use as Voltage or	
 Core losses and copp Measurement of Die Susceptibility measuredium. Capacitance of two of 	hite. grating/Prism. on at double slit. n of a liquid (KI). of L-C-R circuit using square wave generator and C.R.O. per losses in a transformer. electric constant of a liquid by any method. rement by immersing a parallel plate capacitor in a dielectric	3HRS Per expt
 Learning Outcome: A Students learn Students learn 	At the end of the course, learners will be able to: skills of measurement using Laboratory instruments. to tabulate and document results of measurement in journal to draw inferences and conclusions, identify sources of error and s.	

T.Y.B.Sc. Physics Paper I: SOLID STATE DEVICES AND INSTRUMENTATION

SEMVI Paper I	SOLID STATE DEVICES AND INSTRUMENTATION	Theory	
Course Objectives:	: At the end of the course, students will be	e able to:	
1. Classify indu	ustrial devices based on their properties and	working mechanism.	
•	terminal devices and their working.	U	
•	devices to basic instrumentation circuits.		
	asic Analog voltmeter and ammeter.		
photoconductive cell,	es. diodes, Varicap diodes, Schottky Barrier die Photovoltaic cell, Photodiode, Light emittin), Solar cells and <u>Photocouplers.</u>	ode, Semiconductor	L
Industrial Devices.		1	12L
dentification, SCR appli activated SCR (LASCR),	ctifier (SCR), SCR characteristics, rating, c lications, Silicon controlled switch (SCS), Gate t , Shockley diode, Diac, Triac, Typical Diac-T UJT). Phototransistor, V-FET	curn off switch (GTO), Light	
Image Capture Devi Vidicon tube, Plumbic (CCD's).	ices. con, Silicon Diode Array Vidicon, Solid Stat		5L
voltmeter, Extending v	ents. Multirange ammeter, Universal shunt, DC v voltmeter range, Transistor voltmeter, Ohmr ital voltmeter, multimeter and frequency me	oltmeter, Multirange neter – Series and shunt	16L
Oscilloscope: CRT, CRO block diag sweep generator, Dela	gram (simple CRO), Vertical amplifier, horiz ay line.		L
type of strain gauge, foil transducer, LVDT, Capac Signal Generator:	transducer, selecting a transducer, Strain gauge il strain gauge, semiconductor strain gauge, The citive transducer, Piezo electric transducer and ator, AF sine and square wave generator, fur	s, resistance wire gauge, rmistor, Inductor Hall effect transducers 4	2L L
ntroduction, Electrical t type of strain gauge, foil transducer, LVDT, Capac Signal Generator:	I strain gauge, semiconductor strain gauge, The citive transducer, Piezo electric transducer and	rmistor, Inductor Hall effect transducers	

Monochrome and Colour TV, R.R. Gulati).

Electronic Instrumentation: Kalsi TMH

Electronic Devices and Circuits: J. Millman and C. Halkias

Electronic Instrumentation and Measurement Techniques: William David Cooper PHI 3rd edition

Electronics Devices and Circuits An Introduction: Allen Mottershed PHI 3rd edition Electronic Principles – Malvino

A course in Electrical and Electronic Measurement: A. K. Sawhney Dhanpat Rai and Com. 2001.

Learning Outcome: At the end of the course, students will be able to:

- 1. Understand the working of two terminal devices such as Power diodes, tunnel diodes, Varicap diodes, Schottky diode and their applications.
- 2. Understand the working of Industrial devices such as SCR, TRIAC, DIAC and their applications in various circuits.
- 3. Explain the working principle of solid state image scanners (CCD's) and the Basic LED TV.
- 4. Understand the use of PMMC in basic measuring instruments such as analog DC ammeter, voltmeter, Ohmmeter, Multimeter.
- 5. Describe the simple CRO building block and its various stages.
- 6. Define transducers, types of transducers(Electrical and Mechanical), Semiconductor strain gauge, LVDT, Capacitive and Peizo electric.
- 7. Describe the Standard Signal generator, AF Sine and square wave generator and the basic function generator.

T.Y.B.Sc. Physics Paper II: Atomic Physics

SEMVI Paper II	Atomic Physics	
Course Object	tives	
1. Discu	ss the application of Schrodinger's equation to hydrogen atom.	
2. Descr	ibe the structure of alkali metal elements and effect of magnetic field or	n aton
	o discuss X-ray spectra.	
	ss spectra of diatomic molecules and Raman spectra	
Theory		
Hydrogen Atom:		6L
	n for the H-atom, separation of variables, Quantum numbers-n, l, ml,	UL
magneton.	ent, J and mJ, Angular momentum, Magnetic moment and Bohr	
magneton.		
Many Electron Atoms		9L
Antisymmetric wave f	ciple and classification of elements in periodic table. Symmetric and functions, Electron configuration, Hund's rule, Spin orbit interaction, otal angular momentum, L-S coupling, J-J coupling.	
Atomic Spectra:		8L
-	Selection rules (derivation from transition probabilities), Alkali metal	
1 1	l, Sharp, Diffused and Fundamental series, fine structure in alkali	
spectra.	i, Sharp, Diffused and Fundamental series, fine structure in arkan	
specua.		
A		07
Atoms in a Magnetic		8L
Ũ	ld on an atom, Larmor Precession, The Normal Zeeman effect, Lande	
0 1	tern in a weak field (Anomalous Zeeman effect), The Stern-Gerlach	
experiment.		
X-ray Spectra:		6L
· ·	n, Moseley's law, Explanation of X-ray spectra on the basis of quantum	
-	evels and characteristic X-ray lines, X-ray absorption spectra,	
Fluorescence and Auge		
Spectra of Diatomic N	Aolecules:	15L
-	els, Rotational spectra, Vibrational energy levels, Vibration-Rotation	
	las and explanation of band structure on its basis, Electronic spectra.	
		8L
Raman Effect:		
	man effect, Classical theory of Raman effect Pure rotational Raman	
Quantum theory of Ra	man effect, Classical theory of Raman effect Pure rotational Raman aman spectra, Rotational fine structure, Experimental set up for Raman	

Learning Outcome	
------------------	--

Learner will be able to

- Apply Schrodinger's equation to hydrogen atom and obtain the three quantum numbers. and discuss effect on atom due to spin orbit interaction.
- Explain the fine structure observed in alkali element due to spin orbit interaction and due to applied magnetic field.
- Analyse the diatomic spectra of the molecule

Reference Books

1.Perspectives of Modern Physics, Arthur Beiser, 5th Edition, McGraw Hill (1995)

2.Introduction to Modern Physics, F.K. Richtmyer, E.H.Kennord, J.N. Cooper (6th Ed.)

3.Introduction to Atomic Spectra, H.E.White, McGraw Hill Book Company

4.Introduction to Molecular Physics, Barrow5.

Spectrophysics, Anne P. Thorne, Chapman and Hall

T.Y.B.Sc. Physics Paper III: THERMODYNAMICS AND STATISTICAL MECHANICS

SEMVI Paper III	THERMODYNAMICS AND STATISTICAL MECHANICS	Theory
Course Objectives:		
features of t 2. To explain th	ow statistics of the microscopic world can be he macroscopic world. he use of thermal and statistical principles in variety of mathematical techniques and prob ysics.	a wide range of applications.
4. To explain va	arious statistical distributions such as MB, BE	and FD statistics.
5. To explain th	e theoretical principles and design of interna	l combustion engines.
6. To explain th	e techniques of production of low temperatu	are and refrigeration.
7. To explain re	lation between thermodynamic entropy and	probability.
	gines – The Otto cycle and its efficiency. Diesel cy	cle and its efficiency.
Mean effective pressure Production of low tem	in Carnot, Otto ad Diesel cycles	251
Cooling by sudden adia Refrigerating machines. coefficient and inversion and cascade cooling. Liq Properties of He I and He	Vapour compression machines. Refrigerators bas abatic expansion of compressed gases. Efficie Enthalpy and heat flow. Joule Kelvin effect. Ex temperature. Application to Van der Waals' gas. uifaction of hydrogen and helium. Production of e II. Cooling by Adiabatic Demagnetisation of para	ncy and performance of cpression for joule Kelvin Principles of regenerative temperatures below 4° K. amagnetic substances.
Statistical Mechanics.		151
Continous random varia Probability Distribution,	bility, Probability and Frequency, Some basic ru bles, Mean value of discrete and continous varial Binomial distribution: Mean value and fluctuatior Mean value and Standard deviation, Gaussia	oles, Variance: Dispersion, n, Stirlings Approximation,
probable and rms speed Entropy. Statistical inter	tribution tribution. Maxwell Boltzman Statistics. Molecu s. Experimental verification of Maxwell Boltzman pretation of second law of Thermodynamics. Oth i Dirac statistics: Only qualitative study) Phase Sp	statistics. Probability and er statistical distributions
House Introduction to Statistica Treatise on heat - M.N. S Thermal Physics – S.C G	tatistical physics – D.P Khandelwal and A.K. Pa al Mechanics – B.B. Laud, New Age International (Saha and B.N. Shrivastava, The Indian Press(1965 arg, R.M. Bansal and C. K. Ghosh, TMH (1993) Roberts and A.R Miller , E.L.B.S. (1960)	2003)

Text Book of Heat – G.R. Noakes, Mcmilan & Co (1960) Thermodynamics - William C.Reynolds (1968) Heat and Thermodynamics – M.W. Zemansky and R.H. Ditman, McGraw Hill (1997) Perspectives of modern physics – Arthur Beiser, 5th edition, McGraw hill (1995) Learning Outcome: At the end of the course, students will be able to: Students learn various mathematical tools used in statistical mechanics. • Students learn to differentiate between MB, BE and FD statistics and the conditions • under which BE and FD distributions behave as MB distributions. Students learn to construct illustrative examples of MB, BE and FD distributions. Students learn about comparison between various ICT engines such as Karnaught auto and diesel engines. Students learn to evaluate performance of ICT engines. Students learn production of low temperature and the techniques involved. Students learn about difference between liquid helium 1 and liquid helium 2 and peculiar properties of liquid helium 2.

T.Y.B.Sc. Physics Paper IV: Electromagnetic Theory II & Theory of Relativity

SEMVI Paper IV	Electromagnetic Theory II & Theory of	Theory
<u> </u>	Relativity	
0	his course will provide students with :	
6	magnetic effects produced by steady currents	
0	e basic laws explaining magnetic fields produ	ced by steady currents and
magnetic vector pot		
	Maxwell's equations and electromagnetic end	
	ostulates of special theory of relativity, Lorent	z transformation equations
	ena related to special theory of relativity.	
Theory (Electromagn		
Magnetostatics and R		
Magnetic Field of S	•	10L
	its applications, Ampere's circuital law, mag	
	stant circuit, magnetic scalar potential.[Reitz]	
Magnetic Field in m	aterial media	141
Magnetization, magne	tic field produced by magnetized material, ma	gnetic scalar potential
	sity, sources of the magnetic field, magnetic in	
equations, magnetic su	sceptibility and permeability, Hysteresis, Bou	ndary conditions on
the field vectors [Reitz], current circuits containing magnetic media,	Magnetic
circuits[Mahajan,Rang	awala], Magnetic circuits containing permane	ent magnets.
Microscopic Theory	of Magnetism	6L
	matter, Origin of Diamagnetism, Origin of Pa	aramagnetism, theory
of Ferromagnetism, F	erromagnetic domains.[Reitz,Griffiths]	
Magnetic Energy		3L
0	oupled circuits, Energy density in the magnet	c field, Hysteris
Loss.[Reitz]		
Maxwell's Equation	s	8L
Faraday's Law of elect	tromagnetic induction, Generalization of Amp	ere's Law,
Displacement current,	Maxwell's equations and their empirical basis	s, Electromagnetic
energy.[Reitz,Griffiths]	
Relativity		3L
Michelson-Morley exp	periment, postulates of the theory of special Ro	elativity.
Relativistic Kinema	tics	8L
Relativity of simultane	eity, Derivation of Lorentz transformation equ	ations, some
consequences of Lorer	tz transformation equations, Relativistic additional	tion of velocities,
relativistic transformat	ion of velocities and Doppler effect in Relativ	vity.
Relativistic Mechan	ics	81
	ity, Redefining momentum, Relativistic mom	
Refrences : -		
	nematical Physics, Charlie Harper,	
2. Introduction to Elec Delhi(1995)	trodynamics, David Griffiths, Prentice Hall of	India Ltd,New

3. Foundations of Electromagnetic Theory, Reitz and Milford, Addision-Wesley	
Publishing Company.	
4.Electricity and Magnetism, Mahajan and Rangawala, Tata McGraw-Hill	
Publishing Company Ltd.	
Learning Outcome: At the end of the course, students will be able to:	
1 Understand the Biot-Savart's law, Ampere's law and apply them to various cases.	
2 Understand the concept of magnetic vector and scalar potential.	
3 Define magnetic susceptibility, permeability and obtain relation between them.	
4 Derive boundary conditions on field vectors.	
5 Understand paramagnetism, dimagnetism and ferromagnetism	
6 Understand magnetic circuits and study various cases of magnetic circuits.	
7 Derive expressions for magnetic energy of coupled circuits and energy density.	
9 Understand Maxwell's equations and Poynting theorem	
10 Study Michelson Morley experiment and understand postulates of special theory of relativity.	
11 Derive the equations of Lorentz transformation and their consequences.	
12 Derive the equations of relativistic addition of velocities.	
13 Understand Doppler effect and solve the problems.	
14 Understand various aspects of Relativistic dynamics and equivalence of mass and energy	

T.Y.B.Sc. Physics Paper VI: PRACTICAL course

SEMVI Paper V	PRACTICAL COURSE	
Course Objectives: T	his course will provide students with :	
1.To guide student	s to perform at least a minimum of 8 experiments from the syllabus	
Practicals		
	Practical Paper I	3HRS
Experiments. (Minimum eight).		
1) Energy band gap of a semiconductor (point contact diode eg. OA 79).		
2) Light emitting diode. VI characteristics, Band gap energy (wavelength of emission),		
	power with applied voltage.	
1	ll:Variation of current with Intensity (distance) and with wavelength	
	and its use in relaxation oscillator.	
	and gate controlled ac rectifier.	
	Characteristics, Gate triggering application.	
7) Design of simple square / sine wave oscillator. Using discrete components or		
IC LM 8030		
8) Construction and de	esign of analog multirange voltmeter, ammeter and ohmmeter	
	ermination of velocity of ultrasonic waves in a liquid medium	
	e compressibility of the liquid using crystal oscillator.	
	insition capacitance of Varactor diode as function of reverse bias	
	variable/tuning capacitor in any one application. (type CD91 or	
Bel 90 or equivalent)		
11) VI characteristics of tunnel diode and its use in an oscillator (type 1N 2940 or		
equivalent)		
12) Study of LVDT (inc	uding calibration) and its use in any one application.	
	Practical Paper II	3HRS
Experiments (minimum eight)		
1. Velocity of sound by forming stationary waves by using C.R.O.		
 Cylindrical obstacle. 		
3. Double refraction		
4. Searle's Goniometer		
5. Biprism.		
6. Hysteresis by magne	tometer.	
7. e/m using cathode r	ay tube.	
8. Measurement of Hy	steresis loss using CRO	
9. Michelson Morley Ex	kperiment.	
10. Absolute capacity by ballistic galvanometer.		
11. Mutual inductance b	by ballistic galvanometer.	
12. Variation of mass w	vith velocity. (Computer Simulation)	
13. C1/C2 by ballistic	galvanometer	
6	At the end of the course, learners will be able to:	
	skills of measurement using Laboratory instruments.	
	to tabulate and document results of measurement in journal	
 Students learn 	to draw inferences and conclusions, identify sources of error and	
interpret result	•	