गोंय विद्यापीठ

ताळगाव पठार 403206 गोंय, भारत

Tel: 8669609021/065 Fax: +91-832-2452889

State Public University since 1985 Recognized by UGC u/s 12-B (Accredited by NAAC with A Grade) Goa University Taleigao Plateau 403206 Goa, India

Date: 19.08.2022

Email: <u>arpg@unigoa.ac.in</u> Website: <u>www.unigoa.ac.in</u>

GU/Acad -PG/BoS -NEP/2022/339/11

CIRCULAR

The University has notified Ordinance OA-35 governing the **Master of Science in Chemistry Programme** offered at the **School of Chemical Sciences**, Goa University Campus and the Affiliated Colleges for implementation from the Academic year 2022-2023 onwards.

The approved Semester I and II Syllabus of the **Master of Science in Chemistry** Programme (Organic, Inorganic, Analytical and Physical as Annexure I, Pharmaceutical Chemistry as Annexure II, Skill Based Course as Annexure III and Bridge Course as Annexure IV) is attached.

The Dean/ Vice-Deans of the School of Chemical Sciences/ Principals of Affiliated Colleges offering the Master of Science in Chemistry Programme are requested to take note of the above and bring the contents of the Circular to the notice of all concerned.

(Donald A. E. Rodrigues) Joint Registrar – Academic

Τo,

- 1. The Dean, School of Chemical Sciences, Goa University.
- 2. The Vice-Deans, School of Chemical Sciences, Goa University.
- 3. The Principals of Affiliated Colleges offering the Master in Sciences in Chemistry Programme.

Copy to:

- 1. The Chairperson, Board of Studies in Chemistry PG.
- 2. The Programme Director, M. Sc. Chemistry, Goa University.
- 3. The Controller of Examinations, Goa University.
- 4. The Assistant Registrar, PG Examinations, Goa University.
- 5. Directorate of Internal Quality Assurance, Goa University for uploading the Syllabus on the University website.

ANNEXURE-I

M.Sc. Chemistry (Organic, Inorganic, Analytical and Physical Chemistry) Part-I (SEM I & II) Syllabus (80 Credit course)

		SEM I	
Sr. No.	Subject code	Paper title	Credits
1.	СНОС-411	Fundamentals of Organic Chemistry (DSCC)	4
2.	CHIC-411	Fundamentals of Inorganic Chemistry (DSCC)	4
3.	CHPC-411	General Physical Chemistry (DSCC)	4
4.	CHAC-411	Techniques in Analytical Chemistry-I (DSCC)	4
5.	CHOE-411	Practical Course in Organic Chemistry-I (DSOC)	2
6.	CHOE-412	Practical Course in Organic Chemistry-II (DSOC)	2
7.	CHIE-411	Practical Course in Inorganic Chemistry-I (DSOC)	2
8.	CHIE-412	Practical Course in Inorganic Chemistry-II (DSOC)	2
9.	CHPE-411	Practical Course in Physical Chemistry-I (DSOC)	2
10.	CHPE-412	Practical Course in Physical Chemistry-II (DSOC)	2
11.	CHAE-411	Practical Course in Analytical Chemistry-I (DSOC)	2
12.	CHAE-412	Practical Course in Analytical Chemistry-II (DSOC)	2
	<u> </u>	SEM II (Inorganic Chemistry)	
1.	CHIC-412	Chemistry of Coordination & Organometallic Compounds (DSCC)	4
2.	CHIC-413	Chemistry of Materials (DSCC)	4
3.	CHIC-414	Concepts in Molecular Symmetry and Spectroscopy (DSCC)	4

4.	CHIC-415	Concepts in Inorganic Chemistry (DSCC)	4
		SEM II (Analytical Chemistry)	I
1.	CHAC-412	Chemical Methods of Analysis (DSCC)	4
2.	CHAC-413	Techniques in Analytical Chemistry-II (DSCC)	4
3.	CHAC-414	Separation Techniques (DSCC)	4
4.	CHAC-415	Instrumental Methods of Analysis (DSCC)	4
		SEM II (Organic Chemistry)	1
1.	CHOC-412	Organic Spectroscopy (DSCC)	4
2.	CHOC-413	Pericyclic and Organic Photochemical Reactions (DSCC)	4
3.	CHOC-414	Synthetic Methodologies in Organic Chemistry (DSCC)	4
4.	CHOC-415	Stereochemistry and Organic Transformations (DSCC)	4
	•	SEM II (Physical Chemistry)	
1.	CHPC-412	QuantumChemistryandStatisticalThermodynamics(DSCC)	4
2.	CHPC-413	Group Theory and Molecular Spectroscopy (DSCC)	4
3.	CHPC-414	Chemical Kinetics and Thermodynamics (DSCC)	4
4.	CHPC-415	Electrochemistry and Surface Studies (DSCC)	4

Programme: M.Sc. Part-I (Chemistry)

Course Code: CHAC-411Title of the course: Techniques in Analytical Chemistry - INumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisite	Students should have studied chemistry courses at graduate level or	· must
s for the	have cleared change of discipline entrance test conducted by	
course:	University.	004
course.	1. Learning various methods of data handling in analysis.	
	2. Understanding the significance of sampling and calibration techniq	ues.
Course	3. Understanding principles and applications of various types of	[
Objective:	techniques in	
5	4. Training the students to deduce structures based on IR, NMR	, MS
	combined data.	
	1. Students will be able to analyse the role of statistical too	ls for
	determination of error and organised data management for syste	ematic
	interpretation.	
Course	2. Student will be able to apply the sampling and calibration metho	ds for
Outcome:	obtaining reliable results.	
Ourcome.	3. Students will be able to understand basic principles and sco	pe of
	different methods of Analysis	
	4. Students will be able to solve problems based on IR, NMR	, MS
	combined spectral data.	11
	Content	Hrs
•	Objectives and Data Handling	5
-	e of analytical chemistry in research and industry; statistics and data	
	in analytical chemistry, standard operating procedures, good practices: quality assurance, method validation and quality control.	
	and Calibration Techniques	5
- 0	and sample preparation, general steps in chemical analysis,	5
	of glass wares. Finding the best straight line-least square regression,	
	coefficient; Calibration curves, standard addition technique and	
	andards. Chemical concentrations.	
	nethods of Analysis	6
	y and Titrimetric methods, Principle, methodology, Advantages &	
Disadvant	ages over instrumental methods. Conditions for identifying a given	
reaction as	s method of Analysis, Classification of reactions in titrimetric	
analysis (A	Acid-Base, redox, complexometric and precipitation), Standard	
solutions a	and their preparation. Selection of Visual Indicators in titrimetric	
Analysis		
	on to Electroanalytical techniques	4
	on to electrochemical cell, electrode potential, Classification of	
	lytical techniques, working principles, and their applications	
	on to Thermoanalytical techniques	5
-	Principle, Instrumentation and applications of Thermo Gravimetric Analysis,	
Differentia	al Thermal Analysis, and Differential Scanning Calorimetry.	

	Numericals based on TGA.	
6.	Introduction to Chromatographic Techniques	15
	a. Principles of chromatography, classification of chromatographic techniques	
	based on mechanism of retention, configuration, mobile and stationary	
	phase. Efficiency of separation- plate theory (theoretical plate concept) and	
	rate theory (van Deemter equation).	
	b. Principles and applications of Paper chromatography, thin layer	
	chromatography, HPTLC, Size exclusion and Ion exchange	
	chromatography. Counter-current chromatography for isolation of natural	
	products.	
	c. Gas and Liquid Chromatography: Introduction; Instrumental Modules; The	
	Separation System; Choice of Conditions of Analysis; Sample Inlet	
	Systems; Detectors; Practical Considerations in Qualitative and Quantitative	
	Analysis; Coupled Systems-introduction to GCMS, LCMS; Applicability-	
	interpretation and numericals.	
7.	Introduction to Spectroscopic Techniques	20
	a. Interaction of Electromagnetic Radiation with Matter: Electromagnetic	
	spectra, regions of spectrum, numericals.	
	b. Ultraviolet and visible Spectroscopy: Electronic spectra and Molecular	
	structure: types of electronic transition, Chromophore and auxochrome,	
	absorption by isolated chromophore, conjugated chromophores, aromatic	
	compounds, inorganic chelates. Calculating λ max for Conjugated Dienes,	
	Trienes, polyenes, α , β -unsaturated carbonyl compounds, Numericals.	
	Choices and effect of solvents on UV-Vis. Quantitative Calculations: Beer-	
	Lambert Law; Mixtures of absorbing species-laws of additivity of	
	absorbance; calibration curve for calculation of unknown; Spectrometric	
	errors in measurement; Deviation from Beer-Lambert Law - chemical	
	deviation, instrumental deviation; Numericals for quantitative analysis using UV-VIS spectroscopy.	
	1 15	
	c. Infrared Spectroscopy: Infrared absorption and molecular structures,	
	molecular vibrations, types of vibrations, IR spectra, overtones and bands- basis of NIR absorption. Spectra interpretation, Frequencies of functional	
	group, Spectral Databases, Identification of unknown compounds.	
	d. Spectrometric Instrumentation of UV-Vis and IR: Sources, monochromators,	
	sample cells, detectors, instrumental wavelength and absorption calibration.	
	e. Proton and Carbon NMR Spectroscopy: Theory of NMR, Instrumentation,	
	Chemical shift, factors influencing chemical shift, solvents used in NMR,	
	spin-spin splitting, coupling constant calculation, factors influencing	
	coupling constant.	
	f. Mass Spectrometry: Principle, Instrumentation and various fragmentation	
	patterns.	
	g. Conjoint spectrometry problems: Structural elucidation of organic molecules	
	using IR, UV, NMR and MS.	
	h. Raman Spectroscopy: Theory, Basic instrumentation and Structural analysis	
	using Raman Spectra.	
	(Note: Assignment based on all above spectrometric methods should be given	

	nt. More weightage of lectures shall be given for solving IR and NMR blems for structure elucidation)
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be used. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.
Text	1. G. D. Christian, Analytical Chemistry, 6 th Ed.; Wiley, 2004.
Books/ Reference	2. J. H. Kennedy, <i>Analytical Chemistry: Principles</i> , 2 nd Ed.; Saunders College Publishing, 1990.
s / Readings	3. G. W. Ewing, <i>Instrumental Methods of Chemical Analysis</i> , 5 th Ed.; McGraw- Hill Int., 1985.
Reduings	4. W. Kemp, <i>Organic Spectroscopy</i> , 3 rd Ed.; Palgrave, 1991.
	 5. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch, <i>Fundamentals of Analytical Chemistry</i>, 9th Ed.; Cengage learning, 2014.
	 6. F. J. Holler, D. A. Skoog, S. R. Crouch, <i>Principles of Instrumental Analysis</i>, 6th Ed.; Thomson Books, 2007.
	 7. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, <i>Instrumental methods of Analysis</i>, 7th Ed.; HCBS Publishing, 2004.
	 8. C. N. Banwell, E. M. McCash, <i>Fundamentals of Molecular Spectroscopy</i>, 4th Ed.; Tata McGraw- Hill, 2006.
	 9. R. M. Silverstein, F. X. Webster, Spectrometric identification of Organic Compounds, 6th Ed.; Wiley, 1998.
	 10. H. Gunzler, A. Williams, Handbook of Analytical Techniques, 1st Ed.; Wiley, 2001.
	11. P. S. Kalsi, <i>Spectroscopy of Organic Compounds</i> , 2 nd Ed.; New Age International, 2000.
	 12. E. Pretsch, P. Buhlmann, C. Affolter, <i>Structural Determination of Organic Compounds</i>, 2nd Ed.; Springer, 2005.
	13. L. D. Field, S. Sternhell, J. R. Kalman; <i>Organic Structures from Spectra</i> , 4 th Ed.; Wiley, 2007.
	14. R. A. Day, A. L. Underwood, <i>Quantitative Analysis</i> , 6 th Ed.; Prentice Hall, 2001.
	15. B. K Sharma, <i>Instrumental methods of chemical analysis</i> , Goel Publishing House, Meerut, 2004.
	 16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, 6th Ed.; Wiley, 2009.
	 17. P. J. Larkin, <i>Infrared and Raman Spectroscopy: principles and spectral interpretation</i>, 2th Ed.; Elsevier, 2018.
	 18. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivasankar, <i>Vogel's Text Book of Quantitative Chemical Analysis</i>, 6th Ed.; Pearson, 2009.

Programme: M. Sc -I (Analytical Chemistry)

Course Code: CHAC-412 Title of the Course: Chemical methods of analysis Number of Credits: 4 Total Hours: 60

Effective from AY: 2022-23

<i>Prerequisites for the course:</i>	Students should have studied analytical chemistry courses at M Chemistry in semester I	M.Sc.
Course	1. Introduction to the various chemical method of analysis, detai	ls of
Objectives:	underlying principle of chemical methods, advantages and limitations	15 01
e ejectivest	2. Application of chemical methods for qualitative and quantitative and	lvsis
		J
Course	1. Students will be able to explain the basic principle and chemistry	
Outcomes:	behind different conventional method of analysis.	
	2. Student will know the limitation of method of analysis and will be	e in a
	position to choose an appropriate chemical method for particular analy	sis
	Content	Hrs
1. Acid-Base Tit	trations	
a. Standard aci	ds and Base solutions,	10
b. Theory of ac	cid-base indicators for Acid-Base titrations	
i. Colour cha	ange and range of indicator	
ii. Selection	of proper indicator	
iii. Indicator	errors	
c. Neutralizatio	n curves for strong acid-strong base; weak acid-strong base and weak	
base-strong	acid weak acid-weak base titrations	
d. Polyfunction	nal acids and bases; titration curves for poly functional acids and bases;	
titration curv	ves for amphiprotic species	
e. Determining	the equivalence point; feasibility of acid - base titrations; magnitude	
of the equili	brium constant; effect of concentration	
f. Typical app	lications of acid-base titrations	
2. Complexome	tric titrations	
a. The complex	x formation reactions; Stability of complexes; stepwise formation	8
constants		
	pplexing agents; amino carboxylic acid titration	
	ic properties of EDTA; EDTA complexes with metal ions; equilibrium	
	involving EDTA in solution; condition of formation constants	
	ion curves; effect of other complexing agents on EDTA; factors	
-	e titration curves; completeness of reaction	
	or EDTA titrations; Theory of common indicators	
	thods using EDTA- direct titration; back titration and displacement	
	direct determinations; titration of mixtures; selectivity, masking and	
damasking	•	
	s of EDTA titrations- hardness of water; magnesium and Al in antacids;	
	, manganese and zinc in a mixture.	
3. Precipitation		_
	to precipitation titrations; feasibility of precipitation titrations	6
b. Titration cur	ves	

i. Effect of titrant and analyte concentration on titration curves	
ii. Effect of reaction completeness on titration curves	
iii. Titration curves for mixture of anions	
c. Indicators for precipitation titrations	
d. The Volhard, the Mohr's and the Fajan's methods	
e. Titration of sulfate with barium	
4. Basic concepts in Electrochemical Titrations	
a. Faradic and non-Faradic currents	4
b. Reversible and irreversible cells	
c. EMF series; standard electrode potential; Nernst equation; calculation of cell	
potential; effect of current; ohmic potential; polarization; decomposition potential;	
over voltage; concentration polarization; mechanism of mass transport.	
d. Introduction to potentiometric methods	
5. Redox and potentiometric titrations	
a. Redox Titrations: Equilibrium constants for redox reactions- electrode potentials in	8
equilibrium systems; calculation of equilibrium constants	0
b. Redox titration curves- formal redox potentials; derivation of titration curves	
•	
c. Factors affecting the shape of titration curves concentration; completeness of	
reaction; titration of mixtures- feasibility of redox titrations	
d. Detection of end point and redox indicators	
i. Structural aspect of redox indicators	
ii. Specific and nonspecific indicators	
iii. Choice of indicator	
iv. Potentiometric end point detection	
e. Sample preparation: pre-reduction and pre-oxidation	
f. Potentiometric titrations	
6. Gravimetric analysis	
a. Introduction to gravimetric method of analysis	
b. Properties of precipitates and precipitating reagents	6
i. Completeness of precipitates	
ii. Super saturation and precipitate formation	
iii. Particle size and filterability of precipitates	
c. Colloidal precipitates and crystalline precipitates	
d. Purity of the precipitate; coprecipitation, post precipitation; conditions for precipitation.	
e. Fractional precipitation; precipitation from homogenous solution;	
f. Organic reagent as precipitation dimethyl glyoxime, oxine, cupferron,	
salicylaldoxime	
g. Washing of precipitates; drying and ignition of precipitates; calculation of results	
from gravimetric data;	
h. Applications of gravimetric method	
7. Clinical methods of analysis	
a. Composition of Blood; Collection and Preservation of Samples;	10
b. Immunoassay: Radioimmunoassay; its principle and applications; instrumentation	10
o. minunoassay. Radiominunoassay, its principle and applications, institumentation	

for radio bio	•	
c. Clinical app	lication of the radioimmunoassay of insulin, estrogen and progesterone;	
receptor tecl	hniques of breast cancer	
d. Enzyme- lin	ked immunosorbent assay; principles; practical aspects; applications	
e. Blood gas an	nalyzer	
f. Trace eleme	nts in the body	
8. Environment	al Sampling and Analysis	
a. Acquiring r	neaningful Sample	8
b. Air Sample	Collection and Analysis	
c. Water Sam	ole Collection and Analysis	
d. Soil and Se	diment Sampling	
e. Sample Pre	paration for Trace Organics	
f. Methods an	d Performance-Based Analyses	
Pedagogy:	Mainly lectures and tutorials. Seminars / term papers /assignment	nts /
0.00	presentations / self-study or a combination of some of these can als	
	used. ICT mode should be preferred. Sessions should be interactiv	ve in
	nature to enable peer group learning.	
References/	1. G. D. Christian, Analytical Chemistry, 6th Ed., John Wiley, New Y	/ork,
Readings	2004.	,
Ū	2. D. A. Skoog, D. M. West & F. J. Holler, Fundamentals of Analy	vtical
	<i>Chemistry</i> , 9 th Ed., Sounders College publishing, 2014.	
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, Vogel's Textbo	ok of
	Quantitative Inorganic Analysis, 6 th Ed., Pearson Education Asia, 2000	
	4. D. Harvey, Modern analytical chemistry, 1 st Ed., The McGraw-	
	2000.	,
	5. G. H. Jeffery, J. Bassett, J. Mendham, R C. Denney, Vogel's Text	Book
	of Quantitative Chemical Analysis, 5th Ed., John Wiley, New York, 198	
	1	

Programme: M.Sc. Part-I (Analytical Chemistry)Course Code: CHAC-413Title of the course: Techniques in Analytical Chemistry - IINumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisite s for the course:	Students should have studied analytical chemistry courses at Chemistry in semester I	M.Sc.
Course Objective:	 Provide understanding of the principle of optical analytical techn like Nephelometry, Turbidimetry, and Polarimetry. Introduce the principles and applications of Absorption and Em spectroscopic techniques. Develop concepts in various Electroanalytical techniques such metry, conductometry and Karl Fischer titration. Acquaint the students to the basic principles of Radioana techniques and solvent extraction techniques. 	iission as pH
Course Outcome:	 Students will be able to explain the principle of Nephelor Turbidimetry, and Polarimetry. Students will be able to describe and differentiate betwee absorption and emission techniques such as AAS, AES. Students will be able to illustrate the principle of Electroana techniques such as voltametry, conductometry and Karl F titration. Students will be able to explain and apply the principl Radioanalytical techniques and solvent extraction methods. 	en the lytical lischer
	Content	Hrs
 Optical analytical techniques Nephelometry and Turbidimetry: Introduction to principle, instrumentation and application of nephelometry, turbidimetry. Factors affecting measurement; comparison between nephelometry, turbidimetry, colorimetry and fluorimetry; applications of nephelometry and turbidimetry. Polarimetry: Introduction, principle and Instrumentation of Polarimetry; application of optical rotation method in rate constant determination; acid-catalyzed mutarotation of glucose; inversion of cane sugar. Introduction to terms such as optical rotatory dispersion (ORD), cotton effect curves, circular dichroism, octant rule for ketones. 		15
 2. Introduction to Absorption and Emission Techniques Introduction, principles and applications of Atomic absorption Spectroscopy (AAS) Atomic Emission spectroscopy (AES), and Flame Emission spectroscopy (FES). Excitation techniques, electrodes and their shapes, Quantitative and qualitative application, brief introduction to ICP-MS, ICP-OES 		5

3. Electroa	nalytical techniques	15
a. Brief	introduction to electroanalytical techniques. Voltametry and	
	aphy, cyclic voltametry, coulometry, controlled potential coulomety	
	lometric titrations, Stripping voltammetry, ion-selective electrodes	
	sors; Evaluation and Calculation; Application to Inorganic and	
	Trace analysis	
	tion to Ion selective electrodes; construction, application and	
	y coefficient of Ion selective electrode; pH measurement; buffer	
	glass electrode; instrument for pH measurement.	
	pects of conductometric titration; types of conductometric titration;	
	es and disadvantages of conductometric titration; Introduction;	
-	nstrumentation; advantages, disadvantages and applications of High	
•	y titrations.	
	her Titration	5
	tion, theory, instrumentation, advantages and disadvantages Karl	
	eagent, determination of water content in industrial samples.	
	alytical techniques	8
	and principles of radio analytical technique, detection of nuclear	
	, radiation detectors, pulse height analysis, counting error, analytical	
	on of radioisotopes, neutron activation analysis and isotope dilution	
analysis.		
	tion to Extraction Techniques	12
-	quid extraction/solvent extraction: partition coefficient, distribution	
	percent extraction, choice of solvents, Solvent extraction of metal	
	association complexes and metal chelates, multiple batch extraction,	
•	ounter-current distribution.	
	ion to green analytical extraction methods: Supercritical Fluid	
	on, Pressurized Liquid Extraction, Ultrasound assisted Extraction,	
	ve assisted Extraction, Enzyme assisted Extraction, Solid phase	
	raction, Solid Phase Extraction.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignme	
	presentations / self-study or a combination of some of these can all	
	used. ICT mode should be preferred. Sessions should be interact	ive in
T	nature to enable peer group learning.	
Text	1. G.D. Christian, <i>Analytical Chemistry</i> , 6 th Ed.; Wiley, 2004.	. 1
Books/	2. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch; Fundament	tals of
Reference	Analytical Chemistry, 9 th Ed.; Cengage Learning, 2014.	. 1
s/ Dendinen	3. F. J. Holler, D. A. Skoog, S. R. Crouch, <i>Principles of Instrum</i>	nental
Readings	Analysis, 6 th Ed.; Thomson Books, 2007.	o m1x
	4. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivas, Vegel's Text Book of Ougstitating Chaming! Anglusis 6 th Ed. Bo	
	<i>Vogel's Text Book of Quantitative Chemical Analysis,</i> 6 th Ed.; Pe	arson,
	2009. 5 H. H. Willard, L. L. Marritt, L. A. Daar, E.A. Sattle, Instrum	
	5. H. H. Willard, L. L. Merritt, J. A. Dean, F.A. Settle, Instrum	nental
	Methods of Analysis, 7 th Ed.; CBS Publishing, 1988.	and a sec
	6. J. H. Kennedy, Analytical Chemistry: Principles, 2 nd Ed.; Sau	unders
	College Publishing, 1990.	

7. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5 th Ed.;
McGraw-Hill, 1985.
8. R. A. Day, A. L. Underwood, <i>Quantitative Analysis</i> , 6 th Ed.; Prentice Hall, 2001.
9. B. K. Sharma, <i>Instrumental methods of chemical analysis</i> , Goel Publishing House, Meerut, 2004.
10. R. D. Braun, <i>Introduction to Instrumental analysis</i> , Pharma Med Press, 2012.
11. G. R. Chatwal, S. K. Anand, <i>Instrumental Methods of Chemical Analysis</i> , 5 th Ed.; Himalaya publishing House, 2019.
 H. Gunzler, A. Williams, <i>Handbook of Analytical Techniques</i>, 1st Ed.; Wiley, 2001
13. M. A. Rostagno, J. M. Prado, <i>Natural Product Extraction: Principles</i> and Applications, RSC, 2013.
14. E. Scholz, Karl Fischer Titration: Determination of Water, Springer, 2011.

Programme: M.Sc. Part-I (Analytical Chemistry) Course Code: CHAC-414

Title of the course: Separation Techniques

Number of Credits: 04 Total Hour

Total Hours: **60** Effective from AY: **2022-23**

Prerequisite	Students should have studied analytical chemistry courses at	M.Sc.
s for the	Chemistry in semester I	
course:		
Course	1. Introduction of various separation techniques.	
Objective:	2. Evaluate the use of chromatographic techniques for chemical ana	lysis.
	1. Students will be able to select the separation techniques for purifi	cation
C	of analytes from interferents.	
Course	2. Students will be able to analyse data and interpret chromatogram.	
Outcome:	3. Students will be able to perform qualitative and quantitative estin	
	using HPLC data.	
	Content	Hrs
1. Basic Sen	aration Technique:	
-	al aspects of separation techniques-role of separation technique in	10
	rsis; separating the analyte from interferents, general theory of	10
	ration efficiency: separation factor.	
1	ifying separation techniques: Separations based on size; separations	
	on mass or density, separations based on complexation reactions	
	king); separations based on a change of state; separations based on a	
	oning between phases.	
-	e 1	
(Note: Following techniques shall be discussed as representative example)		
i. Basic principles of distillation; theory of vacuum, steam, azeotropic and fractional distillation.		
ii. Fractionation by solvent extraction: based on chemical nature and based on polarity of analyte.		
	nbrane techniques: dialysis, reverse osmosis, ultrafiltration.	
	trifugation techniques: Sedimentation velocity, Sedimentation	
	librium, analytical and preparative centrifugation, differential	
	rifugation, density gradient centrifugation; applications in	
1	aration.	
	graphic Methods:	
	uction to chromatography: Principle of chromatographic technique,	30
	and parameters used in chromatography, classification of	
	atographic methods, partition versus adsorption chromatography,	
-	ative and quantitative analysis by chromatography;	
	Chromatography (Paper and thin layer):	
-	er Chromatography: Principle, types (ascending, descending,	
circular, two dimensional paper chromatography), choice of solvent,		
adso	orbents, multiple development, qualitative and quantitative	
mea	surement applications.	
ii. Thi	h Layer Chromatography (TLC): Principle; efficiency of thin layer	
	es, methodology (technique), criteria for selection of stationary and	

mobile phases (numerical to calculate elution strength of mixed solvents used as mobile phase), choice of adsorbents, preparation of plates, spotting (spot capacity), development of chromatogram, identification and detection using physical and chemical methods, reproducibility of Rf values and improving resolution, Two-dimensional TLC, comparison of TLC with paper chromatography and column chromatography, thin layer ionophoresis and electrophoresis, qualitative, quantitative evaluation and applications.

- iii. High-performance TLC (HPTLC): Introduction, theory, classification (classical, high performance, ultra, preparative HPTLC), difference between TLC and HPTLC with respects to the parameters, scanning densitometer, quantitative analysis and applications.
- b. Column Chromatography: Introduction, types (conventional, flash, LPLC, Dry column vacuum chromatography), principle, packing, loading, eluting and collecting eluent in the column chromatography and experimental requirements, theory of development, migration rates of solutes, band broadening, resolution and column efficiency, variables that affect column efficiency, van Deemter equation, qualitative and quantitative analysis, numericals and applications.
- c. Gas Chromatography (GC): Instrumentation, selection of operating condition, carrier gases, stationary phases, choices of GC column, temperature selection, sampling techniques, methods to prepare derivatives of samples (silylation, acylation, alkylation), factors affecting separation, working principle of GC detectors such as TCD, ECD, FID, quantification methods such as normalizing peak area, internal std., external std, standard addition, advances in GC, hyphenated techniques; GC-FTIR, GC-MS.
- d. Liquid-Liquid Partition Chromatography: HPLC

Introduction, selection of stationary and mobile phase, types of bonded phase chromatography-NPC and RPC and stationary phases used, reversed phase partition chromatography, steps in HPLC method development in partition chromatography, elution techniques (isocratic and gradient), ion pairing agents, buffer agents, organic modifiers, optimization of capacity factor, gradient selectivity factor and column plate numbers, numericals on method development using Snyder's polarity index, advances in LC, Preparative vs analytical HPLC, Chiral chromatography- Pirkle stationary phases, examples of enantiomer separation such as ibuprofen, calculation of enantiomeric excess. Choosing detectors- working principle of RI, UV-Vis, conductivity and ELSD, hyphenated techniques; LC-MS. Analysis of chemical data obtained using HPLC chromatogram, LC-MS. application of HPLC method development in food analysis/drugs, etc.
 3. Other Chromatographic Methods:

a. Size Exclusion Chromatography: Principle, types, stationary phases in gel 10 chromatography, physical and chemical characteristics of gel, mechanism of gel permeation chromatography (GPC), instrumentation of GPC,

	applications of GPC- determination of molecular weight of polymer with				
	numericals.				
h	Supercritical-Fluid Chromatography: Introduction, important properties of				
0.	supercritical-fluids, instrumentation and variables, SFC column vs other				
	column, applications and data analysis.				
C	Affinity Chromatography: Principle, affinity matrix, ligands, mobile				
	phase, separation mechanism, application in the separation of proteins,				
	etc				
d.	Ion Exchange Chromatography: Introduction, mechanism of separation,				
	types of stationary phases, factor affecting separation; Ion exclusion				
	chromatography; separation mechanism- Donnan theory, application in				
	the separation of alkaloids, carboxylic acids etc.				
4. Ele	ectrophoresis:				
a.		10			
	electrophoresis, paper electrophoresis, capillary electrophoresis and gel				
	electrophoresis.				
b.	Capillary electrophoresis- Instrumentation, sample introduction in CE,				
	types of CE methodology, electrophoretic mobility and electroosmatic				
	mobility, total mobility, efficiency and resolution in CE column,				
0	numericals. Gel electrophoresis - types of gel, Polyacrylamide gel electrophoresis				
ι.	PAGE, Agarose GE, SDS-PAGE, 2D Gel electrophoresis, factors				
	affecting separation;				
d	Capillary Electrochromatography.				
e.					
	of Vitamin B-complex by using CZE and MEKC. Staining and detecting				
	electrophoresis band.				
Pedag	ogy Mainly lectures and tutorials. Seminars / term papers /assignme	ents /			
	presentations / self-study or a combination of some of these can also	so be			
	used. ICT mode should be preferred. Sessions should be interactive	ve in			
	nature to enable peer group learning.				
Text	1. G. D. Christian, <i>Analytical Chemistry</i> , 6 th Ed.; John Wiley, 2004.				
Books		als of			
Refere		7			
s/ Poadin	3. David. Harvey, <i>Modern Analytical Chemistry</i> , 1 st Ed.; The McC	Jraw-			
Readir	ngs Hill, 2000. 4. L. R. Snyder, J. J. Kirkland, J. W. Dolan, <i>Introduction to modern l</i>	liauid			
	<i>chromatography</i> , 3 rd Ed.; John Wiley & Sons, 2009.	uquia			
	5. H. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, <i>Instrum</i>	nental			
	methods of Analysis, 7 th Ed.; CBS Publishing, 1986.	uu			
	6. G. H. Jeffery, J. Bassett, J. Mendham, R. C. Denney, <i>Vogel's Text</i>	Book			
	of Quantitative Chemical Analysis, 5 th Ed.; John Wiley, 1989.				
	7. H. Gunzler, A. Williams, Handbook of analytical techniques, 1 st	t Ed.;			
	Wiley, 2002.				
	8. F. W. Fifield, D. Kealey, Principles and Practice of Analy	ytical			
	Chemistry, 5 th Ed.; Blackwell Science Ltd., 2000.				

9. A. Braithwaite, F. J. Smith, Chromatographic methods, 5 th Ed.; Kluwer
academic publishers, 1999.
10. J. Inczedy, Analytical Applications of Ion Exchangers, 1 st Ed.;
Oxford Pergamon Press, 1966.

•

Programme: M.Sc. Part-I (Analytical Chemistry) Course Code: CHAC-415 Title of the course: Instrumental Methods of Analysis Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Prerequisite s for the course:	Students should have studied analytical chemistry courses at Chemistry in semester I	M.Sc.
Course Objective:	 Introduction of various instrumental methods for analysis. Understanding the utility of various instrumental methods qualitative and quantitative analytical tool. 	as a
Course Outcome:	 Students will be able to explain theory and instrumentation of variants instrumental methods of analysis. Students will be able to judge suitability of different instrumentation of variants for qualitative and quantitative analysis. 	mental
	Content	Hrs
a. Introduct by cryst b. Powder of powder c. Powder	n Techniques: X-ray and Neutron Diffraction etion to X-rays; interaction of X-rays with matter; X-ray diffraction als, Bragg's law. X-ray diffraction: instrumentation and applications. Interpretation • X-ray diffraction pattern. calculation of lattice parameters. diffraction file and other crystallography databases. Neutron diffraction: theory, instrumentation and applications.	15
a. X-ray sp b. X-ray fl waveler c. Energy o microan (EPMA) d. Introduc	ctroscopic Techniques: bectroscopy, theory of X-ray absorption and emission. uorescence (XRF) spectroscopy: introduction, instrumentation, ngth dispersive and energy dispersive XRF, applications. dispersive X-ray (EDX) spectroscopy and Electron probe alysis): introduction, instrumentation and their applications. ction to X-ray absorption near edge structure (XANES), Extended ion fine structure (EXAFS) and their applications.	15
a. Introduc b. X-ray a instrun c. Introdu	Spectroscopic Techniques: etion to Electron spectroscopy techniques. nd UV Photoelectron spectroscopy (XPS, UPS): theory, nentation and their applications. etion to Auger electron spectroscopy (AES) and electron energy opy (EELS) and their applications.	5
4. Microscop a. Optical microsc	bic Techniques: microscopy: components of microscope, different types of optical copy techniques; significance and applications. microscopy: Scanning electron microscopy (SEM), Transmission	10

c. Atomic modes and ap d. Sampl mounting, gri tinting, differ e. SEM/T etc.	STEM) –Principle, instrumentation and applications. c force microscopy (AFM): theory, instrumentation, operational pplications. e preparation for microscopy: Sample selection, sectioning, inding, different polishing methods; microstructure – etching, heat ent etching methods, EM sample preparation: TEM grids, ion milling, electropolishing	
5. Molecular	r Fluorescence, Phosphorescence and Chemiluminescence	10
Spectrom	etry:	
and pho	cence and phosphorescence: theory; factors influencing fluorescence sphorescence; instrumentation; spectrofluorometer and	
	orimeter;	
	tions of photoluminescence methods	
	uminescence: Introduction; instrumentation; measurement of	
	uminescence, gas phase chemiluminescence analysis,	
	uminescence titrations. Application in Organic and Inorganic	
Analys		
	chemiluminescence and Bioluminescence: theory and their	
applicat		
	on of Analytical Methods:	5
	view of automated system, distinction between automatic and	
automat	ed devices; advantages and disadvantages by automation.	
	Control with automated instruments, discrete and continuous	
analyze	ers, automatic instruments. Flow and Sequential Injection Analysis,	
Labora	tory Information Management System.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignm	
	presentations / self-study or a combination of some of these can a	
	used. ICT mode should be preferred. Sessions should be interact	ive in
	nature to enable peer group learning.	
Text Books/	1. A. R. West, Solid State Chemistry and Its Applications, 2 nd Ed.; W	Viley,
References	2014.	
/ Readings	2. V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder	
	<i>Diffraction and Structural Characterization of Materials</i> , 1 st Ed.; Springer, 2003.	
	3. D. A. Skoog, F. J. Holler and S. R. Crouch, Principles of Instrume	ental
	Analysis, 7 th Ed.; Cengage, 2017.	
	4. T. G. Rochow and E. G. Rochow, An Introduction to Microscopy	by
	Means of Light, Electrons, X-Rays, or Ultrasound, 2 nd Ed.; Spring 2012.	~
	5. Y. Leng, Materials Characterization: Introduction to Microscopic	c and
	Spectroscopic Methods, 2 nd Ed.; Wiley-VCH, 2013.	
	6. A. M. Garcia-Campana, <i>Chemiluminescence in Analytical Chemis</i> 1 st Ed.; CRC Press. 2001.	stry,
	7. R. F. Egerton, Physical Principles of Electron Microscopy: An	

Introduction to TEM, SEM, and AEM, 2 nd Ed.; Springer, 2016.
8. E. H. Kisi and C. J. Howard, Applications of Neutron Powder
<i>Diffraction</i> , 1 st Ed., Oxford Science Publications, 2008.
9. G. D. Christian, Analytical Chemistry, 6 th Ed. Wiley, 2004.

.

Programme: M. Sc. Part-I (Chemistry)

Course Code: CHAE-411 Title of the Course: Practical Course in Analytical Chemistry - I Number of Credits: 02 Total Contact Hours: 60 Effective from AY: 2022-23

Prerequisites Students should have studied chemistry practical courses at graduate level or for the must have cleared change of discipline entrance test conducted by Goa University. course: 1. Introduction of various experimental techniques for analysis. Course 2. Learning data analysis, handling and interpretation of spectra. **Objectives:** 1. Students will be able to explain how to determine an unknown concentration of solution. Course 2. Students will use statistical methods to analyse data in laboratory. Outcomes: 3. Students will be able to use different techniques for qualitative and quantitative estimation. Hrs Content This course consists of 7 units of experiments in various areas of Analytical chemistry. Minimum 13 experiments which include at least 02 experiments from unit 1-6 and 01 experiment from unit 7 shall be conducted. Unit 1: Statistics 9 i. Calibration of selected Volumetric apparatus ii. Calibration of selected Laboratory instruments iii. Preparation of standard solutions and standardisation. 9 Unit 2: Colorimetry/ UV-Visible Spectrophotometry i. Estimation of Iron from Pharmaceutical sample (capsule) by thiocyanate method ii. Estimation of phosphoric acid in cola drinks by molybdenum blue method. iii. Estimation of KNO₃ by UV spectroscopy and K₂Cr₂O₇ by Visible spectroscopy

iv. Simultaneous determination and Verification of law of additivity of absorbances (K₂Cr₂O₇ and KMnO₄).

9

Unit 3: Flame Spectrophotometry and AES/AAS/ICP Spectroscopy

- i. Estimation of Na and K in food supplements or cosmetic products.
- ii. Estimation of Pb in water sample by AES/AAS/ICP.
- iii. Estimation of Fe and Al in Iron ore sample by AES/AAS/ICP.

Unit 4: Ion Exchange Chromatography and High Pressure Liquid Chromatography10i. Separation and Estimation of chloride and bromide.10ii. Separation of Anthracene and Naphthalene using reverse phase chromatography10iii. Separation of Benzaldehyde and Benzyl alcohol using normal phase
chromatography10Unit 5: Volumetric Titrations10i. Estimation of Ca in pharmaceutical tablet.10ii. Estimation of Al and Mg in antacid tablet.10iii. Estimation of CaO in cement.10Unit 6: Solvent Extraction and spectrophotometry10i. Extraction of Cu as copper dithiocarbamate (DTC) using solvent extraction and
estimation by spectrophotometry.10

ii. Determi	nation of Ni as Dimethylglyoxime complex by spectrophotometry.		
	iii. Determination of Silver as ion association complex with 1,10-Phenanthroline and		
Bromop	yrogallol red.		
	retation Exercises	4	
i. Thermal	studies: TG/DTA and Isothermal weight loss studies of various hydrated		
solids li	ke CuSO ₄ \cdot 5H ₂ O, Ca ₂ C ₂ O ₄ \cdot H ₂ O, Fe ₂ C ₂ O ₄ \cdot 2H ₂ O.		
ii. X-ray po	owder diffractometry: Calculation of lattice parameters from X-ray		
powder	pattern of cubic system such as NiMn ₂ O ₄ , CoFe ₂ O ₄ etc.		
iii. IR spect	ra of Urea, benzoic acid, Copper sulphate pentahydrate etc.		
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a combinat	ion of	
	some of these. Sessions shall be interactive in nature to enable peer group		
	learning.		
Text Books/	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College		
References /	Publishing, 2 nd Ed., 1990.		
Readings	<i>s</i> 2. G. D. Christian, <i>Analytical chemistry</i> , 5 th Ed., John Willey and Sons, 1994		
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vogel's		
Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Education Asia		sia	
	2009.		
	4. A. J. Elias, Collection of interesting chemistry experiments, University press		
2002.			
	5. R.A. Day & A.L. Underwood, <i>Quantitative Analysis</i> , 6 th Ed., Prentice Hall,		
2001.			
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis publishe	ers,	
	2002.		

Programme: M. Sc. Part-I (Chemistry)

Course Code: CHAE-412 Title of the Course: Practical Course in Analytical Chemistry - II

Number of Credits: **02** Total Contact Hours: **60**

Effective from AY: 2022-23

Prerequisites Students should have studied chemistry practical courses at graduate level or for the course: must have cleared change of discipline entrance test conducted by Goa University. Course 1. Introduction of various experimental techniques for analysis. **Objectives:** 2. Learning data analysis, handling and interpretation of spectra. 1. Students will be able to standardize a material to determine an unknown Course Outcomes: concentration. 2. Students will use statistical methods to analyse data in laboratory. 3. Students will be able to use different techniques for qualitative and quantitative estimation. Content Hours This course consists of 7 units of experiments in various areas of Analytical chemistry. Minimum 13 experiments which include at least 02 experiments from unit 1-6 and 01 experiment from unit 7 shall be conducted. Unit 1: Statistics 9 Calibration of selected Volumetric apparatus i. Calibration of selected Laboratory instruments ii. Preparation of standard solutions and standardisation. iii. **Unit 2: Titrimetric Analysis** 8 Standardisation and estimation of Chloride using precipitation i. titration (Mohr's method) Analysis of commercial caustic soda by neutralisation titrimetric ii. method iii. Determination of sulphates by complexometric titrations using

EDTA. Unit 3: Flame Spectrophotometry and AES/AAS/ICP Spectroscopy 10 Estimation of Na and K in food supplements or cosmetic products i. using flame photometer. Estimation of chromium in water sample by AES/AAS/ICP. ii. Estimation of nickel, molybdenum in Hastelloy C-22 using iii. AES/AAS/ICP.. Unit 4: Natural product isolation and Ion Exchange Chromatography 9 Isolation of cinnamaldehyde from cinnamon i. ii. Isolation of Caffeine from tea powder Separation and estimation of Cadmium and Zinc iii. Unit 5: UV-Visible Spectrophotometry and High-Pressure Liquid 10 Chromatography Estimation of KNO₃ and K₂Cr₂O₇ using UV- Visible spectroscopy i. ii. Separation of Benzaldehyde and benzoic acid using reverse phase HPLC.

iii. Quantification of naphthalene in a sample using reverse phase HPLC.

Unit 6: Solver	Unit 6: Solvent Extraction and spectrophotometry 10					
i. Spectro						
	APC tablet using solvent extraction					
ii. Colorin	netric determination of iron with salicylic acid.					
iii. Determ	nination of copper in brass sample by colorimetry.					
Unit 7: Data 1	Interpretation Exercises	4				
I. NMR/I	Mass spectra					
II. HPLC	and GC chromatograph					
III. XRD p	owder pattern of cubic systems					
IV. Therm	ogram of coordination compounds					
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a	a combination of				
	some of these. Sessions shall be interactive in nature to enable p	eer group				
	learning.					
Text Books /	1. J. H. Kennedy, Analytical Chemistry Principles, Saunder	rs College				
References /						
Readings	eadings 2. G. D. Christian, <i>Analytical chemistry</i> , 5 th Ed., John Willey and Sons, 1994					
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar,					
	Vogel's Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson					
	Education Asia 2009.					
	4. J. Elias, <i>Collection of interesting chemistry experiments</i> , University press, 2002.					
	5. R.A. Day & A.L. Underwood, <i>Quantitative Analysis</i> , 6 th Hall, 2001.	Ed., Prentice				
	 J. Kenkel, Analytical Chemistry for Technicians, 3rd Ed., publishers, 2002. 	Lewis				

Programme: M.Sc. Part-I (Chemistry)

Course Code: CHIC-411 Title of the course: Fundamentals of Inorganic Chemistry Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry courses at graduate level	or must		
for the	have cleared change of discipline entrance test conducted by Goa			
course:	University			
course1. To introduce atomic structure, molecular structure, bonding, and symmetry.2. To provide fundamental knowledge of solid state chemistry, coordination chemistry, organometallic chemistry, and bioinorganic chemistry.Course3. To provide fundamental aspects of transition & inner transition elements & their compounds.4. To introduce air and water pollution, and its treatments, to follow directive of the Supreme Court in 1993 to introduce environmental education at all levels.				
Course Outcome:	organometallic chemistry and bioinorganic chemistry			
	be in a position to apply knowledge to treat these pollutants.			
	Content	Hrs		
	ucture, molecular structure and bonding	10		
	Structure: Structures of hydrogenic atoms: some principles of			
-	mechanics, atomic orbitals. Many electron atoms: penetration &			
-	, building up principle, classification of elements. Spectroscopic			
terms. Atomic properties: atomic radii, ionic radii, ionization energy,				
electron affinity, electronegativity, polarizability.				
	r Structure & bonding: Lewis structures: octet rule, resonance.			
	VSEPR model: basic shapes, modification of the basic shapes. Valence			
	eory: hydrogen molecule, homonuclear diatomic molecules,			
	polyatomic molecules, promotion, hypervalence, hybridization. Molecular			
orbital theory: approximation, boding & antibonding orbitals.				
	clear diatomic molecules & Heteronuclear diatomic molecules			
2. Molecular		4		
	y elements and symmetry operations.			
b. Equivalent symmetry elements and equivalent atoms, symmetry point				
groups with examples, point groups of higher symmetry.				
c. Systematic procedure for symmetry classification of molecules and				
illustrative examples, dipole moment, optical activity and point groups				

3. Solid state chemistry	10
a. Structures of solids: crystal structures, lattices and unit cells, fractional	
atomic coordinates and projections, close packing of spheres, holes in	
closed-packed structures.	
b. Structures of metals & alloys: polytypism, nonclosed-packed structures,	
polymorphism of metals, atomic radii of metals, alloys, substitutional and	
interstitial solid solutions, intermetallic compounds.	
c. Ionic solids: characteristic structures of ionic solids, binary phases, ternary	
phases, rationalization of structures, ionic radii, radius ratio, structure	
maps, energetics of ionic bonding, lattice energy and the Born–Haber	
cycle, The calculation of lattice enthalpies.	
(numerical expected)	
4. Chemistry of transition & inner transition elements	10
a. Transition elements: IUPAC definition of transition elements, occurrence,	10
physical and chemical properties, noble character, metal halides, oxides &	
oxido complexes, examples of metal-metal bonded clusters, difference	
between 1 st row and other two rows.	
b. Inner transition elements: Lanthanides, occurrence, properties, oxidation	
states, electronic structure, colour and spectra, magnetic properties,	
lanthanide contraction, compounds of lanthanides. Actinoid chemistry:	
general trends and properties, electronic spectra, thorium and uranium.	
5. Coordination and Organometallic Chemistry	12
a. Coordination chemistry: Introduction, representative ligands,	12
nomenclature. Constitution and geometry: low coordination numbers,	
intermediate coordination numbers, higher coordination numbers,	
polymetallic compounds. Isomerism & chirality in square planar and	
octahedral complexes, ligand chirality. Thermodynamics of complex	
formation: formation constants, chelate and macrocyclic effects, steric	
effects and electron delocalization. Electronic properties of metal	
complexes: CFT applied to octahedral and tetrahedral complexes,	
magnetic moments, CFSE. Electronic spectroscopy: basic concepts,	
interpretation of spectra of $d^1 \& d^9$ ions (Orgel diagram for octahedral and	
tetrahedral complexes).	
b. Organometallic Chemistry: Introduction to organometallic chemistry,	
nomenclature, stability and inert gas rules (neutral atom and donor pair	
electron count methods). Ligands: CO & phosphines, homoleptic	
carbonyls its synthesis and properties, oxidation-reduction of carbonyls,	
metal carbonyl basicity, reactions of CO ligand, spectroscopic properties	
of metal carbonyls. Oxidative addition and reductive elimination.	
6. Basic Bioinorganic Chemistry	4
a. Macronutrients/micronutrients. Role of elements in biology. Metal ion	
transport role.	
b. Definition of metallobiomolecules, metalloporphyrins, structure of	
porphine	
and heme group, examples of metalloenzymes of Cu and Zn.	
7. Environmental Chemistry	10

in the hydroc enviro measu b. Water treatm polluti COD,	llution: Classification of air pollutants and photochemical reactions e atmosphere. Common air pollutants (e.g. CO, NOx, SO ₂ , carbons and particulates) (a) sources (b) physiological and nmental effect (c) monitoring, (d) various remedial & technological res to curb pollution. Air quality standards. pollution: Importance of buffer & buffer index in waste water ents. Chemical, physical & biological characteristics of water on, specific & non-specific characterization of water. DO, BOD, and chlorine demand, typical water treatment & waste water ent (Municipal). Impact of plastic pollution and its effect. Mainly lectures and tutorials. Seminars / term papers /assignments / presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
Tast	nature to enable peer group learning.
Text	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong,
Books/Ref erences /	Shriver & Atkins Inorganic Chemistry, 5 th Ed.; Oxford Publications, 2009.
Readings	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, <i>Inorganic</i>
neuungs	<i>Chemistry: Principles of Structure & Reactivity</i> , 4 th Ed.; Pearson,
	2011.
	3. F. A. Cotton, G. Wilkinson, P. L. Gauss, <i>Basic Inorganic</i>
	<i>Chemistry</i> , 3 rd Ed.; Wiley, 2008 (reprint).
	4. J. D. Lee, <i>Concise Inorganic Chemistry</i> , 5 th Ed.; Wiley, 2008.
	5. F. A. Cotton, <i>Chemical applications of group theory</i> , 3 rd Ed.; Wiley
	Eastern, 2012 (reprint).
	6. L. Pauling, The Nature of The Chemical Bond, 3 rd Ed.; Cornell
	University Press, 1960.
	7. M. C. Day, J. Selbin, <i>Theoretical Inorganic Chemistry</i> , 2 ^{ed} Ed.; Van
	Nostrand-Reinhold, 1969.
	8. H. V. Keer, <i>Principles of Solid state Chemistry</i> , 1 st Ed.; New Age Intl. Ltd, 1993, (reprint 2008).
	 A. R. West, <i>Solid State Chemistry and Its Applications</i>, 1st Ed.; John
	Wiley & Sons, Singapore, 1984 (reprint 2007).
	10. D. K. Chakrabarty, <i>Solid State Chemistry</i> , 2 ^{ed} Ed.; New Age Intl.
	Publishers, 2010.
	11. F. A. Cotton, G. Wilkinson, <i>Advanced Inorganic Chemistry</i> , 3 rd Ed.;
	Wiley Eastern, 2001.
	12. A. V. Salker, Environmental Chemistry: Pollution and Remedial
	Perspective, 1 st Ed.; Narosa Publication, 2017.
	13. A.K. De, <i>Environmental Chemistry</i> , 3 rd Ed.; New Age Intl.
	Publishers, 2005.
	14. A. C. Stern, R. W. Boubel, D. Bruce turner, D. L. Fox,
	<i>Fundamentals of Air Pollution</i> , 1 st Ed.; Academic Press, 1984.
	15. R. A. Horne, <i>Chemistry of Our Environment</i> , 1 st Ed.; John Wiley,
	1978.16. R. S. Drago, <i>Physical Methods in Inorganic Chemistry</i>, Affiliated
	10. K. S. Diago, <i>i nysical methods in morganic Chemistry</i> , Aifillated

17.	East West Press Pvt. Ltd., 2017 G. C. Miessler, D. A. Tarr, <i>Inorganic Chemistry</i> , 3 rd Ed.; Pearson,
	2004

Programme: M.Sc. Part-I (Inorganic Chemistry) Course Code: CHIC-412 Title of the course: Chemistry of Coordination & Organometallic Compounds Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied Inorganic chemistry courses at Chemistry in semester I	M.Sc.
Course Objective:	 To make understand fundamentals of coordination organometallic chemistry. To gain the knowledge on structural aspects of compound 3. To make understand bonding using various models. To correlate spectroscopic and magnetic properties with bo models. To develop a skill of interpretation of magnetic and spectros properties. To understand fundamental concepts of inorganic chen reaction mechanisms. To provide knowledge on applications of organome compoundsin homogenous catalysis. 	nds. Inding Scopic nistry
Course Outcome:	 Students will be able to understand the electronic structu coordination and organometallic compounds. Students will be well equipped with knowledge of CFT and N Students will be in position to understand the magnetic electronic properties. Students will be able to acquire skill on interpretation electronic and IR spectra of inorganic compounds Students will be able understand concepts of inorganic react & mechanisms. Students will be aware of applications of organome compounds in industrial processes. 	AOT and on of ctions
	Content	Hrs
Basic intro a.Valence b. Crystal tetrahedral geometr v) octal M-L bo c. Molecu	e structure of coordination compounds oduction to bonding theories: Bond theory & its utility, limitations of VBT. field theory and its uses in: i) Octahedral compounds; ii) compounds; iii) square-planar compounds and other ries; iv) tetragonally distorted compounds (Jahn-TellerEffect); nedral vs tetrahedral; vi) Evidences showing covalency to the	12
	nd magnetic studies of coordination compounds	12
a.(i) Electr diagram	ronic spectra of atoms, (ii) Electronic spectra of complexes; Orgel s, correlation diagrams, T-S diagrams examples and problem (iii) Charge-transfer bands; (iv) Selection rules and intensities,(v)	

Luminescence.	
b. Vibrational spectra of coordination compounds.	
c. Magnetic studies: cooperative magnetism, basic concepts of magnetic	
antiferromagnetism, temperature dependent magnetism, Curie law,	
Curie Weiss Law; spin cross over phenomenon.	
3. Inorganic reaction mechanisms	12
a. The thermodynamics of complex formation: Formation constants; Trends in successive formation constants; The chelate and macrocyclic effects; Steric effects and electron delocalization.	
b. Ligand substitution reactions and mechanisms: Rates of ligand	
substitution; The classification of mechanisms; Ligand substitution in	
square-planar complexes: The nucleophilicity of the entering group; The	
shape of the transition state. Ligand substitution in octahedral complexes:	
Rate laws and their interpretation; The activation of octahedral	
complexes; Base hydrolysis; Stereochemistry; Isomerization reactions.	
C. Redox reactions: The classification of redox reactions; The inner-sphere	
mechanism; The outer-sphere mechanism.	
d. Photochemical reactions: Prompt and delayed reactions; d-d and charge-	
transfer reactions; Transitions in metal-metal bonded systems.	
4. Organometallic chemistry of d-block elements	24
a. Stable electron configurations; Electron count preference; Electron	
counting and oxidation states.	
b. Ligands: Carbon monoxide, Phosphines, Hydrides and dihydrogen	
complexes, η^1 -Alkyl, -alkenyl, -alkynyl, and -aryl ligands, η^2 -Alkene and	
-alkyne ligands, Nonconjugated diene and polyene ligands, Butadiene,	
cyclobutadiene, and cyclooctatetraene, Benzene and other arenes, The	
allyl ligand, Cyclopentadiene and cycloheptatriene, Carbenes, Alkanes,	
agostic hydrogens, and noble gases, Dinitrogen and nitrogen monoxide.	
c. Compounds: <i>d</i> -Block carbonyls, Metallocenes, Metal–metal bonding and	
metal clusters.	
d. Reactions: Ligand substitution, Oxidative addition and reductive	
elimination, σ -Bond metathesis, 1,1-Migratory insertion reactions, 1,2-	
Insertions and β -hydride elimination, α -, β -, and δ -Hydride eliminations	
and cyclometallations.	
e. Catalysis: general concepts, catalytic cycle for isomerization of prop-2-en-	
l-ol to prop-1-en-l-ol, Alkene metathesis, hydrogenation of alkenes,	
hydroformylation, Wacker oxidation of alkenes, Asymmetric oxidations,	
Palladium catalyzed C-C bond forming reactions, methanol carbonylation	
(Monsanto acetic acid process).	
Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignme	
presentations / self-study or a combination of some of these can all	
used. ICT mode should be preferred. Sessions should be interact	ive in
nature to enable peer group learning.	

Text	1. P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller & F. A.
Books/Ref	Armstrong 2010, Shriver & Atkins' Inorganic Chemistry, 5 th Ed.,
erences /	Oxford University Press, 2010.
Readings	2. J. E. Huheey, E. A. Keiter& R. L. Keiter, <i>Inorganic Chemistry:Principles of structure and reactivity</i> , 4 th Ed.;Pearson, 2014.
	3. J. D. Lee, <i>Concise Inorganic Chemistry</i> , 5 th Ed, Chapman and Hall, 1996.
	4. F. A. Cotton, G. Wilkinson & P. L. Gaus, <i>Basic Inorganic Chemistry</i> , 3 rd Ed.; John Wiley, 1995.
	5. F. A. Cotton & G. Wilkinson, <i>Advanced Inorganic Chemistry</i> , 3 rd Ed. (4 th & 5 th Eds. preferred); Wiley Eastern, New-Delhi, 1984.
	6. D. Banerjee, <i>Coordination Chemistry</i> , 1 st Ed.;Tata McGraw–Hill, New Delhi, 1994.
	7. N. N. Greenwood & A. Earnshaw, <i>Chemistry of the Elements</i> , Pergamon Press, Exeter, 1984.
	8. G. Rodgers, Introduction to coordination, solid state, and descriptiveInorganic chemistry, 1 st Ed.; McGraw–Hill,1994.
	 R. S. Drago, <i>Physical Methods in Inorganic Chemistry</i>, Affiliated East West Press Pvt. Ltd., 2017
	10. G. C. Miessler, D. A. Tarr, <i>Inorganic Chemistry</i> , 3 rd Ed.; Pearson, 2004

Programme: M.Sc. Part-I (Inorganic Chemistry)

Course Code: CHIC-413

Title of the course: Chemistry of MaterialsNumber of Credits: 04Total Hours: 60

Effective from AY: 2022-23

Prerequisites	Students should have studied Inorganic chemistry courses at	M.Sc.
for the	Chemistry in semester I	
course:		
Course Objective:	 To provide information about different types of materials. To provide knowledge about different types of synthesis. To be familiar with different solid state properties of materials. 	
Course Outcome:	transformations in materials. 8.Students will be in position to describe magnetic, electrical, diel optical, and semiconductor properties of materials.	ties of phase ectric,
	Content	Hrs
	n to Materials Chemistry edge about properties, structure and applications of materials.	1
Molecular, N	ce; unit cell; Miller indices and planes; X-Ray diffraction method; Metallic, Covalent and Ionic solids, Hydrogen bonding; Structural n of binary and tertiary compounds; Spinel and Perovskite	
a. Types of c	ects & Non-stoichiometry in Solids lefects: Point defects, Dislocations: Line defects and Plane defects. ficient oxides; Metal deficient oxides and classification of non- etry.	6
a. Broad Cla chemical me b.Types of M Amorphous c. Preparation disadvantage i. Powd Comb comb drying ii. Single metho Chem	Aaterials: Powdered bulk materials, Single crystal and Thin films, materials, and Nanomaterials. n methods for different materials with their advantages and	16

rec	luction method.	
iii. Amorphous Materials: Synthesis & applications.		
iv. Nanomaterials: Synthesis, properties: structural, optical and magnetic		
and	d applications.	
5. Reactivi	ty of Solid Materials	4
Tarnish	reactions, decomposition reaction, solid-solid reactions, addition	
reactions, double decomposition reaction, electron transfer reaction, solid-gas		
reactions	, sintering, factors influencing reactivity of solids.	
6. Phase T	ransformations in Solids	6
Thermod	ynamic consideration, Burgers classification, structural change in	
	unsformation, Martensite transformation, temperature and pressure	
-	transformations, order-disorder transitions, electronic transition,	
transform	ation with a change in composition, enantiotropy and monotropy,	
	's classification.	
7. Electrica	al Properties	7
Electrical	conductivity, free electron theory, Fermi energy, insulators,	
semicond	uctors and conductors, band theory of semiconductor, Brilliouin	
zones, Ha	all effect, Peltier effect, Seebeck effect, photo conductivity and ionic	
conductivity, Superconductivity, BCS theory, Meissner effect, high		
temperatu	are superconductor.	
8. Semicon	ductor Devices	5
Diodes a	and transistors, Junction field effect transistor and metal oxide	
semicond	uctor field effect transistor, light meter, photodiode, phototransistor,	
solar cells, light emitting diodes. Laser materials.		
-	and dielectric properties	4
	cence and phosphorescence, piezoelectric, ferroelectric materials and	
	ons, thermal conductivity, phonon interaction, thermal expansion	
coefficier		
0	tic properties	5
	ion to magnetism, behavior of substance in a magnetic field, magnetic	
	, diamagnetism, paramagnetism, experimental determinations of	
1	susceptibility, ferromagnetism, anti-ferromagnetism and ferrimagnetism,	
	ation of ferromagnetic substance.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignme	
	presentations / self-study or a combination of some of these can al	
	used. ICT mode should be preferred. Sessions should be interact	ive in
	nature to enable peer group learning.	
Text	18. A.R. West, Solid State Chemistry and Its Applications, 1 st Ed.	, John
Books/Ref	Wiley & Sons, Singapore, 1984 (reprint 2007).	
erences /	19. L.V. Azaroff, Introduction to Solids, 1 st Ed., Tata McGraw	/ Hill,
Readings	$2009, (33^{rd} \text{ Reprint}).$	•. •
	20. N. B. Hannay, <i>Treatise on Solid State Chemistry Vol.4 Reacti</i>	vity of
	Solids, 1 st Ed.; Plenum Press, 1976.	
	21. D. K. Chakraborty, <i>Solid State Chemistry</i> , 2 nd Ed.; New	/ Age
	International Publisher, 2010.	•
	22. H. V. Keer, Principles of the Solid State, 1 st Ed., New	/ Age

	International (P) Ltd., (Wiley Eastern Ltd.), 1993, (Reprint 2008).
23.	C. N. R. Rao & K. J. Rao, Phase Transitions in Solid, 1 st Ed.;
	McGraw Hill, 1977.
24.	W. D. Callister, Materials Science and Engineering:An
	Introduction, 7 th Ed.; John Wiley, 2007.
25.	B. D. Fahlman, <i>Materials Chemistry</i> , 2 nd Ed.; Springer, 2011.
26.	H. R. Allcock, Introduction to materials chemistry, 1 st Ed.; John
	Wiley & Sons, 2011.
27.	C. N. R Rao & Gopalkrishnan, New directions in solid state
	chemistry, 2 nd Ed.; Cambridge University Press, 1997.
28.	R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated
	East West Press Pvt. Ltd., 2017.
29.	G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3 rd Ed.; Pearson,
	2004.

Programme: M.Sc. Part-I (Inorganic Chemistry)Course Code: CHIC-414Title of the course: Concepts in Molecular Symmetry and SpectroscopyNumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied Inorganic chemistry courses at Chemistry in semester I	M.Sc.	
Course Objective:	 To train the students to understand the concepts of molecularsymmetry and their applications in chemistry To train the students to understand different spectroscopictechniques viz. magnetic resonance, vibrational & Mössbauer spectroscopy with emphasis on spectral interpretation. 		
Course Outcome:	 Students will be able to explain symmetry aspects of simplemol and their applications in chemistry. Students will be able to explain IR, Raman, ESR, NMR, Möss spectra of simple molecules to determinemolecular geometry. 		
	Content	Hrs	
symmetry improper a b. Products equivalent symmetry symmetric procedure c. Group and group mut abelian gro d. Some pro reducible their chara product. S and cluste	y elements and symmetry operations, symmetry planes and reflections, inversion center, proper axes and proper rotations, axis and improper rotations. of symmetry operations, equivalent symmetry elements and t atoms, relations among symmetry elements and operations, elements and optical isomerism, symmetry point groups, es with multiple high order axes, classes of symmetry operations, for symmetry classification of molecules. d it's defining properties, order of the group, examples of group, ltiplication table, cyclic group, acyclic group, abelian group, non- oup. Sub groups, classes, properties of conjugate elements. perties of matrices and vectors, the great orthogonality theorem, and irreducible representations, irreducible representations and acters, character tables. Bases for irreducible representations, direct bymmetry Adapted Linear Combinations and its applications. Cage r compounds, metal sandwich compounds. mmetry, space groups.	30	
magnetic Resonance b. Presentation resonance coupling i system, n species, ze	by Resonance Spectroscopy; interaction between electron spin and field, interaction between nuclear spin and magnetic field, e condition, instrumental requirements, on of ESR (electron spin resonance) and NMR (nuclear magnetic) spectra, line widths of ESR and NMR spectra, hyperfine in isotropic systems (e.g. H atom, methyl radical etc.), anisotropic umber of expected ESR signals for one electron paramagnetic ero field splitting and Kramer's degeneracy, Spin energy levels of Mn(II) complexes, nuclear quadrupole interaction, spin	30	

delocal c. Mössba emissic arrange quadru Mössba d. Vibrati	onian, ESR spectra of some transition metal compounds, Electron ization, NMR spectral interpretation of a few nuclei like ¹⁹ F, ²⁹ Si, ³¹ P. auer spectroscopy; Mössbauer effect, Mössbauer principle, Recoilless on and absorption spectral line widths, Doppler shift, experimental ement of Mössbauer spectroscopy, chemical shift (isomer shift), pole splitting, magnetic hyperfine interaction, discussion of selected auer nuclei like ⁵⁷ Fe, ¹²⁹ I. onal spectroscopy: Infrared spectroscopy and Raman spectroscopy, le, their use in determination of molecular structure.		
	presentations / self-study or a combination of some of these can also be		
	used. ICT mode should be preferred. Sessions should be interactive in		
	nature to enable peer group learning.		
Text	1. F. A. Cotton, <i>Chemical Applications of Group theory</i> , 3 rd Ed.; John		
Books/	Wiley,1990		
Reference	2. J. E. Huheey, E. A. Keiter, R.L. Keiter, <i>Inorganic Chemistry:</i>		
s / Readings	Principles of structure and reactivity, 4 th Ed.; Pearson, 1993.		
Redaings	3. G. R. Desiraju, J. J. Vittal, A. Ramanan, <i>Crystal Engineering</i> , IISC Press, world Scientific, 2011.		
	4. R. L. Dutta, A. Syamal, <i>Elements of Magnetochemistry</i> , 2 nd Ed.;		
	Affiliated East-West Press, New Delhi, 1993.		
	5. C. N. Banwell, E. M. McCash, Fundamentals of Molecular		
	 Spectroscopy, 4th Ed.; Tata McGraw Hill, New Delhi, 1994. 6. G. Aruldhas, <i>Molecular structure and spectroscopy</i>, Prentice Hall 		
	of India, 2001		
	7. P. Atkins, J. De Paula, J. Keeler, Atkins' Physical Chemistry,		
	International Ed.; Oxford University Press, 2018.		
	8. M. Weller, T. Overton, J. Rourke, F. Armstrong, <i>Inorganic Chemistry</i> , International Ed.;Oxford University Press, 2018.		
	9. E. A. V. Ebsworth, D. W. H. Rankin, S. Cradock, Structural		
	Methods in Inorganic Chemistry, ELBS, 1988.		
	10. K. Nakamoto, Infrared and Raman Spectra of Inorganic and		
	Coordination Compounds, Part A: Theory and Applications in		
	Inorganic Chemistry, 6 th Ed.; Wiley, 2009.		
	11. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination,		
	Organometallic and Bioinorganic Chemistry, 6 th Ed.; Wiley, 2009.		
	12. R. S. Drago, <i>Physical Methods in Inorganic Chemistry</i> , Affiliated		
	East West Press Pvt. Ltd., 2017		
	13. G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3rd Ed.; Pearson,		
	2004		

Programme: M.Sc. Part-I (Inorganic Chemistry)Course Code: CHIC-415Title of the course: Concepts in Inorganic ChemistryNumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied Inorganic chemistry courses at M.Sc. Chemistry in semester I		
Course Objective:	 To gain knowledge in selected topics in inorganic chemistry and study the applications of inorganic compounds in selected areas. To learn in details about the s-block elements and their compounds. To understand the concepts in acid-base reactions in the Inorganic 		
Course Outcome:	 Students will be able to explain the chemistry of s-block elements. Students will be able to explain fundamentals of inorganic medicinal chemistry. Students will be able to solve numerical problems related to some concepts in acid-base and nuclear chemistry. Students will be able to analyse reactions and processes in field of nuclear chemistry. 		
	Content	Hrs	
a.Hydroger abundan Classific ion, hyd b. Group chemica ammoni differen relation c. Group chemica anomale other g preparat	ments and their compounds and hydrides; Electronic structure, position in periodic table, ace, preparation, properties, isotopes, ortho and para hydrogen. cation of hydrides, preparation & properties of hydrides; hydrogen rogen bonding and its influence on properties. 1 elements; Introduction, abundance, extraction, physical and al properties, solubility and hydration, solutions of metal in liquid ia, complexes, crowns and cryptands, electrides, alkalides, ce between lithium and the other group 1 elements, diagonal ship between Li and Mg. 2 elements; Introduction, abundance, extraction, physical and al properties, solutions of metal in liquid ammonia, complexes, bus behaviour of beryllium, difference between beryllium and the group 2 elements, diagonal relationship between Be and Al, tion and properties of Grignard reagent.	17	
 2. Inorganic medicinal chemistry a. Anticancer agents; Platinum and Ruthenium complexes as anticancer drugs, Cancerchemotherapy, phototherapy, radiotherapy using borane compounds. b. Chelation therapy. c. Gadolinium and technetium complexes as MRI contrast agents, X-ray 			
contrast agents.			

d Anti-a	rthritis drugs.	
	acterial agents (Ag, Hg, Zn and boron compounds).	
	ptic and anti-biotic.	
	brants and anti-perspirants.	
¥	ry of radioactive elements	15
	•	15
	c nucleus; Classification of nuclides and nuclear stability. w of Nuclear models.	
	activity, Decay processes and decay energy, half-life of radioactive	
elements		
	ar reactions; Nuclear fission and fusion processes.	
	ar Reactors; Nuclear reactor components and functions, Q values for	
nuclear r		
	ion and measurement of activity; Radiation detection principles.	
	al and Chemical separation techniques of radioactive elements.	
	analytical techniques, Activation analysis.	
	r waste management.	
J. Applic	ations of radioactivity.	
4 4 - 1 1		12
4. Acids and		12
	ed acidity; Proton transfer equilibria in water, Solvent levelling, The	
	system definition of acids and bases, Characteristics of Brønsted	
	Periodic trends in aqua acid strength, Simple oxoacids, Anhydrous	
	Polyoxo compound formation, Nonaqueous solvents.	
	b. Lewis acidity; Examples of Lewis acids and bases, Group characteristics of	
Lewis		
	ons and properties of Lewis acids and bases; The fundamental types	
	ction, Hard and soft acids and bases, Thermodynamic acidity	
-	eters, Solvents as acids and bases.	
	ations of acid-base chemistry, Superacids and superbases,	
	neous acid-base reactions.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignm	
	presentations / self-study or a combination of some of these can a	
	used. ICT mode should be preferred. Sessions should be interact	ive in
	nature to enable peer group learning.	
Text	1. P. W. Atkins, T. Overton, J. Rourke, M. Weller, F. Arms	
Books/Ref	Shriver & Atkins Inorganic Chemistry, 5 th Ed.;Oxford Publica	ations,
erences /	2009.	
Readings	2. J. E. Huheey, E. A. Kieter, R. L. Kieter, O. K. Medhi, Inor	
	Chemistry: Principles of Structure & Reactivity, 4 th Ed.;Pe	arson,
	2011.	
	3. F. A. Cotton, G. Wilkinson, P. L. Gauss, Basic Inot	rganic
	Chemistry, 3 rd Ed.; Wiley, 2008.	
	4. J. D. Lee, <i>Concise Inorganic Chemistry</i> , 5 th Ed.;Wiley, 2008.	1
	5. F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 3	rd Ed.;
	Wiley, 1984.	
1	6. N. N. Greenwood, A. Earnshaw, Chemistry of the Elevent	ments.

	Pergamon Press, 1 st Ed.; 1984.
7.	A. G. Sykes, Advances in Inorganic Chemistry, UK Ed.; Academic
	Press Ltd., 1991.
8.	H. J. Arnikar, Essentials of Nuclear Chemistry, 4th Revised Ed.;
	New Age Intl.Publishers, 2011.
9.	G. Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller, Nuclear
	& Radiochemistry, 3 rd Ed.; John Willey & Sons, 1981.
10.	K.A. Strohfeldt, Essentials of Inorganic Chemistry, Ist Ed.; John
	Willey & Sons, 2015.
11.	G.R. Choppin, J-O. Linjenzin, Radiochemistry and Nuclear
	Chemistry, 2 nd Ed.; Butterworth-Heinemann Ltd, 1995.
12.	R. S. Drago, Physical Methods in Inorganic Chemistry, Affiliated
	East West Press Pvt. Ltd., 2017
13.	G. C. Miessler, D. A. Tarr, Inorganic Chemistry, 3rd Ed.; Pearson,
	2004

Course Code: CHIE-411Title of the course: Practical course in Inorganic Chemistry-INumber of Credits: 02Total Hours: 60Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry practical courses at graduat	e level
for the	or must have cleared change of discipline entrance test conducted b	
course:	University.	<i>y</i> = <i>x</i>
Course Objective:	 Students shall acquire skills in synthetic inorganic chemistry. Students will learn to prepare coordination compounds. Students will learn to prepare useful potash alum from scrap alum Students will learn how to grow single crystals. Students will acquire skills in determination of chromium, oxalat aluminum by redox titrations. Students will be trained to fix the formula of compounds an lattice water molecules by complexometric, redox & iodo titrations. Students shall acquire skills in determination of metal content a 	te, and d find metric
	low concentrations (ppm) using colorimetry / spectrophotometry	-
Course Outcome:	 Students will be in a position to synthesis coordination compound different metals and ligands. Students will be able to grow single crystal. Students will be able to prepare potash alum compound from scrap Al source. Students will be able to determine metal content in the synth inorganic compounds. Students will be able to fix the formula of compounds. Students will be able to use and explain the diverse methods av for estimation of the metals including colorimeters and spectrome 	ls with waste nesised ailable
	Content	Hrs
Minimum 13 e.	xperiments from the list shall be conducted.	
1. Preparation	ns / Synthesis of Inorganic Compounds: (Any Five)	25
ii. Preparationiii. Preparationiv. Preparationv. Preparation	a of hexaamminenickel(II) chloride. a of Trisethylenediaminecobalt(III) chloride. a of potassium trioxalatoaluminate trihydrate. a of potassium hexathiocyanato- κN -chromate tetrahydrate. a of potassium trioxalatochromate trihydrate. a of potash alum from scrap aluminum.	
 2. Estimations / Determinations: (Any Eight) Estimation of nickel in [Ni(NH₃)₆]Cl₂by complexometry or Gravimetry. Estimation of cobalt in [Co(en)₃]Cl₃ by complexometry. Estimation of oxalate in K₃[Al(C₂O₄)₃]·xH₂O or K₃[Cr(C₂O₄)₃]·xH₂O Estimation of nitrite by redox titration. Estimation of calcium from calcite ore. Iodometric determination of Copper in gun metal alloy/Devarda's alloy. 		35

vii. Determi	nation of chromium in chrome alum and $K_3[Cr(C_2O_4)_3] \cdot xH_2O$ and to
	ne degree of hydration.
	primetric/Spectrophotometric determination of nickel or chromium.
	on of manganese by colorimetric / spectrophotometry method.
Pedagogy	Students will be given pre-lab and post-lab assignments on theoretical
0 00	aspects of laboratory experiments prior to the conduct of each experiment.
	Exams will be in the form of ISA, SEA which will involve performing given
	experiments and conduct of viva, systematic reporting of experiments,
	results and observations in laboratory report. Sessions should be interactive
	in nature to enable peer group learning.
Text	1. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1
Books/	&2, 1963.
Reference	2. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
s /	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall, 1974.
Readings	3. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	4. W. L. Jolly, <i>The Synthesis & Characterization of Inorganic Compounds</i> ,
	Prentice-Hall, INC, 1970.
	5. A. J. Elias, <i>General Chemistry Experiments</i> , Revised Ed.; University
	Press, 2008. 6. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, <i>Vogel's Text</i>
	Book of Quantitative Chemical Analysis,6 th Ed.; Pearson, 2002.
	7. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7 th Ed,
	Pearson, 2011.
	8. G. Marr, B. W. Rockett, <i>Practical Inorganic Chemistry</i> , Van Nostrnad
	Reinhold London, 1972.
	Kennold London, 1772.

Course Code: CHIE-412 Title of the course: Practical course in Inorganic Chemistry-II Number of Credits: 02 Total Hours: 60 Effective from AY: 2022-23

D		. 1 1
Prerequisites	Students should have studied chemistry practical courses at gradua	
for the	or must have cleared change of discipline entrance test conducted	by Goa
course:	University.	
Course Objective:	 8. Students shall acquire skills in synthetic inorganic chemistry. 9. Students will learn to prepare coordination compounds. 0. Students will learn how to grow single crystals. 1. Students will acquire skills in determination of metal pres gravimetric and titrimetric method. 2. Students shall acquire skills in determining the metal content at v concentrations (ppm) using colorimetry / spectrophotometry. 	-
Course Outcome:	 Students will be in a position to synthesize coordination compour different metals and ligands. Students will be able to grow single crystal. Students will be able to determine metal content in the given samp O. Students will be in position to apply diverse methods availa estimation of the metals and can use colorimeters and spectrometer Students will able to detect cations and anions in the given salt. 	ole. able for ers.
	Content	Hrs
Minimum 13 e.	xperiments from the list shall be conducted.	
i. Preparatio ii. Estimation iii. Preparatio iv. Estimation v. Synthesis absorption vi. Estimation vii. Estimation viii. Estimation ix. Estimation x. Estimation	 1. Preparations / Estimation of Inorganic Compounds: (Any Nine) Preparation of hexaamminecobalt(III) nitrate. Estimation of cobalt in hexaamminecobalt(III) nitrate by volumetric titration. Preparation of Potassium Trioxalatoferrate(III) Trihydrate Estimation of iron and oxalate by redox titration Synthesis of metal nanoparticles (Cu, Ag, Au, Ni) and determining the absorption maxima by UV-visible spectrophotometer. Estimation of amount of calcium in given sample by gravimetric method. Estimation amount of zinc present in given sample by gravimetric method. Estimation of iron by colorimetric / spectrophotometry method. Estimation of barium by complexometric titration method. 	
2. Semi-micro qualitative analysis of cation and anion in a given inorganic mixture: (Any four mixture) Mixture containing total six cations and/or anions. Cations : Pb ²⁺ , Cu ²⁺ , Cd ²⁺ , Sn ²⁺ , Fe ²⁺ , Fe ³⁺ , Al ³⁺ , Cr ³⁺ , Zn ²⁺ , Mn ²⁺ , Ni ²⁺ , Co ²⁺ , Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , Mg ²⁺ , (NH ₄) ⁺ , K ⁺ Anions: Cl ⁻ , Br ⁻ , I ⁻ , NO ₂ ⁻ , NO ₃ ⁻ , SO ₃ ⁻²⁻ , CO ₃ ²⁻ , SO ₄ ⁻²⁻ , PO ₄ ⁻³⁻ , S ²⁻		20
Pedagogy	Students will be given pre-lab and post-lab assignments on the	eoretical

	aspects of laboratory experiments prior to the conduct of each experiment.
	Exams will be in the form of ISA, SEA which will involve performing given
	experiments and conduct of viva, systematic reporting of experiments,
	results and observations in laboratory report. Sessions should be interactive
	in nature to enable peer group learning.
Text Books/	9. G. Brauer, Handbook of Preparative Inorganic Chemistry, Vol. 1
References	& 2, 1963.
/ Readings	10. G. Pass & H. Sutcliffe, Practical Inorganic Chemistry, Preparations,
	Reactions and Instrumental Methods, 2 nd Ed.; Chapman & Hall, 1974.
	11. S. De Meo, J. Chem. Ed., Vol 80, Pg.No.796-798, 2003.
	12. W. L. Jolly, The Synthesis & Characterization of Inorganic Compounds,
	Prentice-Hall, INC, 1970.
	13. A. J. Elias, General Chemistry Experiments, Revised Ed.; University
	Press, 2008.
	14. J. Mendham, R.C. Denney, J.D. Barnes, M.J. K. Thomas, Vogel's Text
	Book of Quantitative Chemical Analysis,6 th Ed.; Pearson, 2002.
	15. G. Svehla, Vogel's Text Book of Qualitative Inorganic Analysis, 7th Ed,
	Pearson, 2011.
	8. G. Marr & B. W. Rockett, Practical Inorganic Chemistry, Van Nostrand
	Reinhold Company, London, 1972.

Course Code: CHOC-411Title of the course: Fundamentals of Organic ChemistryNumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

D · · ·		4
Prerequisites	Students should have studied chemistry courses at graduate level of	
for the	have cleared change of discipline entrance test conducted by Goa	
course:	University.	
	1. To study the various concepts based on molecular orbital theory.	
Course	2. To understand the concepts of topicity, prostereoisomerism and	
<i>Objective:</i>	chemo-, regio- and stereoselectivity in organic reactions.	
Objective.	3. To understand the mechanistic aspects of various type of reaction	is in
	organic synthesis.	
	1. Students will be in a position to evaluate the effect of delocalization	ion of
	electrons & presence or absence of aromaticity in organic compoun	ds.
Course	2. Students will be able to apply various concepts in stereochemistry	
Outcome:	understand stereochemical outcome in a reaction.	•
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	Content	Hrs
1 Molecular (orbitals and delocalized chemical bonding	08
	description of molecular orbitals of simple acyclic and monocyclic	00
-	ier molecular orbitals.	
•	, cross conjugation, resonance, hyperconjugation and tautomerism	
(types and exa		
· • 1	: Origin of Huckel's rule, examples of aromatic, non-aromatic and	
-	ompounds; concept of Mobius aromaticity.	
	ompounds, concept of Mobilus atomaticity.	
2.Structure &	Dopativity	08
	icity and pKa of organic compounds; Acid and base strengths;	00
-		
_	t & Factors affecting it, effect of structure & medium on acid and	
base strength.	and	
	superacids and superbases.	
	city&nucleophilicity, examples of ambident nucleophiles &	
-	(Including revision of aromatic electrophilic and nucleophilic	
substitution)	•	14
3.Stereochem	U	14
	a. Brief revision of configurational nomenclature: R & S; D & L; E & Z; cis &	
•	<i>canti</i> nomenclature. Chirality in molecules with two and more	
chiral centres.		
	onal analysis of open chain compounds (Butane, 2, 3-butane diol,	
	atane etc.). <i>Erythro</i> and <i>threo</i> nomenclature.	
c. Topicity and Prostereoisomerism: Topicity of ligands and faces-homotopic,		
enantiotopic and Cram's rule /diastereotopic ligands and faces.		
d. Introduction to chemoselective, regioselective and stereoselective reactions.		
e. Stereochemistry of <i>cis</i> - and <i>trans</i> -decalins, conformation and reactivity of		

cyclohexane and substituted cyclohexanes, cyclohexene / cyclohexanone.	
conformational isomerism and analysis in acyclic and simple cyclic systems –	
substituted ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane and	
decalins,	
f. optical isomerism - optical activity - molecular dissymmetry and chirality -	
elements of symmetry. optical isomerism in biphenyls, allenes and spirans - optical	
isomerism of nitrogenous compounds racemisation and resolution.	
4.Reaction Mechanism	08
a. Brief revision of carbocations, carbanions, free radicals, carbenes, Arynes and	
nitrenes with reference to generation, structure, stability and reactivity;	
b. Types of mechanisms, types of reactions, thermodynamic and kinetic control.	
c. The Hammond postulate and principle of microscopic reversibility,	
d. Methods of determining reaction mechanisms like-	
i. Identification of products,	
ii. Determination of the presence of intermediates (isolation, detection,	
trappingandaddition of suspected intermediate,	
iii. Isotopic labelling,	
iv. Stereochemical evidence,	
v. Kinetic evidence and	
vi. Isotope effect (at least two reactions to exemplify each method be	
studied)	
5.Aliphatic Nucleophilic substitution	08
a. Brief revision of nucleophilic substitutions with respect to Mechanism, various	
factors affecting such reactions;	
b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General	
approach to various NGP processes; NGP by unshared/lone pair of electrons;	
NGP by π -electrons; NGP by aromatic rings (formation of phenonium ion	
intermediate); NGP by sigma bonds with special reference to bornyl and nor-	
bornyl system (formation of nonclassical carbocation)	
bornyr system (formation of noneiassical carbocation)	
6.Elimination reactions	08
	08
a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and	
Hofmann rule.	
b. Effects of changes in the substrate, base, leaving group and medium on	
i. Overall reactivity,	
ii. E1 vs. E2 vs. E1cB	
iii. Elimination vs substitution, Mechanism and orientation in pyrolytic syn	
elimination (various examples involving cyclic and acyclic substrates to be	
studied).	
7. Selective reagents for Organic transformation	06
a. Oxidation of organic compounds, PCC, PDC and MnO ₂ , ozonolysis, peracids.	
b. Reduction of organic compounds: NaBH ₄ , LAH, DIBAL reduction and	
reduction with borane and dialkylboranes. Clemmensen reduction, Birch	
reduction and Wolff-Kishner reduction	
	1

Pedagogy	Mainly lectures and tutorials. Seminars/term
	papers/assignments/presentations/ self-study or a combination of some of
	these can also be used. ICT mode should be preferred. Sessions should be
	interactive in nature to enable peer group learning.
Text Books/	1. W. Caruthers, I. Coldham, Modern Methods of Organic Synthesis,
References	Cambridge University Press, 4 th Ed., 2016.
/ Readings	2. M. B. Smith, Organic Synthesis, McGraw-HILL, New York,
	International Edition, 1994.
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry,
	Oxford University Press, 2 nd Ed., 2012.
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanisms, San
	Diego, CA: Harcourt /Academic Press, San Diego, 2002.
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods, Starting
	Materials, VCH Publishers Inc., New York, 1994.
	6. H. O. House, <i>Modern Synthetic Reactions</i> , W. A. Benjamin, 2 nd Ed.,1965
	7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., Revised
	and Enlarged Edition, 1994.
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springer
	India Private Limited, 5 th Ed, 2007.
	9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley and Sons,
	Inc., 2005.

Programme: M.Sc. Part-I (Organic Chemistry)

Course Code: CHOC-412 Title of the course: Organic Spectroscopy Number of Credits: 04 Total Hours: 60

Effective from AY: **2022-23**

<i>Prerequisites for the</i>	Students should have studied Organic chemistry courses at Chemistry in semester I	M.Sc.
course:		
Course Objective:	 To study various theoretical concepts related to organic spectro techniques. To understand the introductory aspects of commonly used 2D techniques. To learn interpretational aspects of spectral data pertaining to U PMR, CMR and MS. 	NMR
Course Outcome:	 Students will be in a position to understand how spectral technique be used in structure elucidation. Students will be able to deduce structures of simple to mode complex molecules by combining the spectral data obtained using the more spectral techniques. Students will be in a position to apply various concepts in of spectroscopy (PMR, CMR, MS and 2D NMR) and analyse/ predict CMR, MS and 2D NMR spectral data based on given structures of s molecules. 	erately two or rganic PMR,
	Content	Hrs
1. UV-Visible		04
	Electronic transition and energy levels, the absorption laws.	
	t of the spectrum, chromophores, Effect of solvent, Conjugation on	
UV-spectra.		
	tomerism, Steric effect and geometrical isomerism in UV spectra.	
	Fieser rule for conjugated dienes and carbonyl compounds.	
functional class b. Methods in vibrational freq c. Factors influ	scopy in structural elucidation of organic compounds (various ses to be considered). IR-Spectroscopy, effect of hydrogen bonding and solvent effect on juencies, overtones, combination and Fermi resonance bands. encing vibrational frequencies. c frequencies of organic molecules.	08
3. NMR Spect	roscopy	14
a. Principles of NMR.		
b. Instrumentation.		
c. Chemical shift- (revision of the basic concepts)		
d. Interpretation of PMR spectra.		
i. Coupling constants and AB, A_2B_2/A_2X_2 , AMX and ABX spin systems.		
ii. Double resonance and decoupling		

iii. Nuclear	Overhauser Effect and its applications.	
iv. NMR Sh	•	
	ation of Absolute and Relative configuration	
	R spectroscopy	8
	ionto ¹³ C –NMR spectroscopy.	
	emical shifts effects (α -, β -, γ -, δ -substituent effects, π -conjugation,	
	effect and ring size effects)	
	upled and proton decoupled 13Cspectra.	
	nance decoupling, APT & DEPT techniques. R and ³¹ P- NMR spectroscopy	6
	nd applications; heteronuclear coupling of carbon to 19 F and 31 P.	0
	ensional NMR spectroscopy	8
	n to 2D NMR techniques and interpretation of spectra of simple organic	
-	using following 2d-NMR techniques-COSY, NOESY, HSQC, HMQC,	
	CSY and INADEQUATE	
6. Mass spe	•	12
	on Methods, Mass Analysis, Even and odd electron ions and	
fragmentati		
	r Formulae Index (D.B.E), Molecular ion peak, base peak, metastable	
	en rule, effect of isotopes.	
	of molecular formulae based on relative abundance. Rules for	
-	on, McLafferty rearrangement, retro-Diels-Alder fragmentation, on associated with functional groups; rearrangement and mass spectra	
U	emical classes.	
of some circ	initial classes.	
Note: Prob	lems involving combined use of different type of spectra, in line	
	e objective/ learning outcome are to be emphasized.	
Pedagogy	Mainly lectures and tutorials. Seminar	s/term
	papers/assignments/presentations/self-study or a combination of sources	me of
	these can be used. ICT mode should be preferred. Sessions shou	ild be
	interactive to enable peer group learning.	
Text	1. P.S. Kalsi, Spectroscopy of Organic compounds, New Age Interna	ational
Books/	Pub. Ltd. & Wiley Eastern Ltd., 2 nd Ed., 1995.	
Reference	2. R.M. Silverstein, F. X. Webster, D.Kiemle, D. Bryce, S.Samant,	
S/		
Readings	Adaptation John Wiley & Sons Inc., 8 th Ed., 2022.	, .
	3. D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvyan, <i>Introduct Spectroscopy</i> , Brooks Cole, 5 th Ed., 2015.	tion to
		noania
	4. R.M. Silverstein, F. X. Webster, <i>Spectrometric Identification of Occompounds</i> , John Wiley & Sons Inc., 7 th Ed. (reprint), 2011.	ganic
	5. V.M. Parikh, Absorption Spectroscopy of Organic Molecules, A	dison
	Wesley Longman Publishing Co., 1974.	auisoii
	6. D.H Williams & I. Fleming, Spectroscopic Methods in O.	roanic
	<i>Chemistry</i> , Tata Mcgraw Hill Education, 6 th Ed., 2011.	Same
	7. W. Kemp, <i>Organic Spectroscopy</i> , Palgrave Macmillan, 3 rd Ed., 1991	
	1 $2 $ $2 $ $2 $ $2 $ $2 $ $2 $ 2	-
	8. W. Kemp, NMR in Chemistry: A Multinuclear Introduction, Macr	nillan

1986.
9. J. R. Dyer, Applications of Absorption Spectroscopy of Organic
compounds, Prentice Hall of India, 1987.
10. L. D. Field, H. L. Li., A. M. Magill, Organic Structures from 2D NMR
Spectra, Wiley, 2015.

Course Code: CHOC-413Title of the course: Pericyclic and Organic Photochemical ReactionsNumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied organic chemistry courses at Chemistry in semester I	M.Sc.
Course Objective:	 To introduce various concepts in pericyclic chemistry base molecular orbital theory and apply for solving pericyclic reactions To introduce analysis of pericyclic reactions using theoretical con To learn mechanistic aspects of pericyclic & photochemical real in organic synthesis. 	cepts.
Course Outcome:	 Students will be in a position to predict course of a given period reaction using the theoretical concepts. Students will be able to applyknowledge of stereochemical output reaction. Students will be able to understand and propose plausible mechanism. 	ut in a
	of pericyclic/photochemical reactions.	
1. Pericyclic R	Content	Hrs 34
 a. Theory o i. Frontier N ii. Transitio iii. Orbital o b. Analysis concepts i. Cycloadd ii. Electrocy iii.Sigmatro (Note: Variantic (Note: (Note: Variantic (Note: (f pericyclic reactions Molecular Orbital (FMO) theory on state aromaticity (Mobius-Huckel theory) concept correlation diagram method. s of pericyclic reactions (including stereochemistry) using the above ition reactions yclic reactions opic rearrangements under thermal and photochemical conditions tous important features to be discussed taking examples important e) ynthetically useful reactions (examples via theory of pericyclic	

2. Organic P	hotochemistry	26	
a. Interacti	on of electromagnetic radiation with matter, laws of photochemistry;		
fateof excited molecule; principles of energy transfer, types of			
	nemical reactions.		
	ncepts in organic photochemistry w. r. t. cycloadditions,		
	eactions and sigmatropic reactions		
	emical reactions of alkenes, dienes, carbonyl compounds and arenes		
	he following- geometrical isomerisation: Cis-trans isomerization		
1	tationary equilibrium; Paterno-Buchi reaction; Norrish Type		
	Di-pimethane rearrangement; bicycle rearrangement		
	emistry of aromatic compounds: valance isomerization;		
-	onary state of benzene and azabenzenes. [4+4]-photodimerization		
	ves of naphthalenes. cycloaddition reaction of benzene,		
-	e, pyrrole and indoles with alkenes and alkynes		
	s involving singlet and triplet oxygen: Photooxygenation reactions,		
	of [2+2] and [4+2]-cycloaddition reaction with isocyclic,		
	ic, dienes and polynuclear aromatic compounds		
11	tions of Organic Photochemistry: Photochemical Reactions as Key		
1	n Natural Product Synthesis (any four examples); example of		
	Dymerization; photochemical functionalization at unactivated		
	Barton reaction, the hypohalite reaction and the Hofmann-Loffler-		
	reaction	onta /	
	Mainly lectures and tutorials. Seminars / term papers /assignme		
	presentations / self-study or a combination of some of these can also be		
	CT mode should be preferred. Sessions should be interactive in nat enable peer group learning.	ure to	
		ecular	
Books/Ref	Photochemistry of Organic molecules, University Science Books, 2		
v	2. B. Dinda, Essentials of Pericyclic and Photochemical Reactions, Spi		
Readings	1 st Ed. 2017.	iniger,	
Ŭ	B. S.Kumar, V. Kumar, S.P. Singh, <i>Pericyclic Reactions: A Mechanist</i>	ic and	
	Problem-Solving Approach, Elsevier, 2016.	ic unu	
	R. E. Lehr., A. P. Marchand, Orbital Symmetry: A Problem S	olving	
	Approach, Academic Press, 1972.	0111115	
5	5. R. B. Woodward, R. Hoffmann, Conservation of Orbital Sym	metrv.	
	Verlag chemie, Academic Press, NY, 1972.	,	
6	5. I. Fleming, Frontier Orbitals and Organic Chemical Reactions,	John	
	Wiley & Sons, 1 st Ed., 1991		
7	V. T. L. Gilchrist, R. C. Storr, <i>Pericyclic Reactions</i> , Cambridge Univ.	Press.	
	1972.	- ~ ~ ,	
8	B. F. A. Carrey, R. J. Sundberg, Advanced Organic Chemistry Part A	and B.	
	Pelnum Pub., 3rd Ed. 1990.		
9	D. T. Lowery, K. Richardson, <i>Mechanisms and Theory in O</i>	rganic	
	<i>Chemistry</i> , Harper and Row Pub., NY, 3rd Ed., 1987.	5	
1	0. C. H. DePay, Molecular Reactions and Photochemistry, Prentice H	Iall (I)	

Ltd, NewDelhi.
11. J. Kopecky, Organic Photochemistry- A Visual Approach, VCH Pub.,
1992.

Prerequisites for the	Students should have studied organic chemistry courses at Chemistry in semester I	M.Sc.
course:		
Course Objective:	 To study various concepts related to carbon-carbon bond formatic To understand designing of organic synthesis to make molecu interest. To plan total synthesis based on protection-deprotection strategy. 	
Course Outcome:	 Students will be in a position to explain how a carbon-carbon bor be constructed along with the selectivity in bond formations. Students will be able to apply knowledge of various reaction constructions of simple to complex organic molecules. Students will be in a position to design protecting group strategies synthesis of organic molecules. 	ons in ies for
	Content	Hrs
a. Keto-eno neutral r mechanis kinetical stable en b. Formatio nucleophilic thermody of enolat c.Alkylation involving lithium equivales compour remedy p d. Reaction including electroph equivales ketones. e.Acylation (intramolec of keto-o	of enols and enolates I tautomerism; Introduction, acidity, basicity concepts &pKa scale, hitrogen and oxygen bases. Formation of enols by proton transfer, sm of enolization by acids & bases, types of enols & enolates, ly & thermodynamically stable enols, consequences of enolization, olate equivalents, preparation and reactions of enol ethers. n of Enolates; Introduction, preparation & properties, non- c bases, E / Z geometry in enolate formation, kinetic vs. ynamic control, other methods for the generation of enolates, issue e ambidoselectivity. n of enolates; diverse reactivity of carbonyl groups, alkylation g nitriles and nitroalkanes, choice of electrophile for alkylation, enolates of carbonyl compounds and alkylation, specific enol nts to alkylate aldehydes and ketones; Introduction, aldol reaction g cross & intramolecular version, enolisable substrates which are not nilic in nature, controlling aldol reactions with specific enol nts, specific enol equivalents for carboxylic acids, aldehydes and at carbon; Introduction, the Claisen ester condensation ular and inter / crossed), acylation of enolates by esters, preparation esters by the Claisen reaction, directed C-acylation of enols and & acylation of enolates; Introduction, thermodynamic control vs.	22
f. Conjugat	•	

 addition, formation of six-membered rings via conjugate addition and nitroalkanes as versatile synthons. g. Examples pertaining to the application of following condensation reactions in organic synthesis; Mukaiyama reaction, Perkin reaction, Dieckmann condensation, Michael addition, Robinson annulation, Sakurai reaction Knoevenagel Reaction, Darzen, Stobbe, Benzoin, Pechmann condensation. 	5
 2. Synthetic utility of important name reactions / methodology a. Mannich Reaction, Nef Reaction, Mitsunobu and Appel Reaction, Baylis Hillman reaction, Mc. Murry coupling, vicarious nucleophilic substitution Steglich and Yamaguchi esterification. b. Ring closing and cross metathesis; Grubb's various generation, Grubbs Hoveyda, Schrock catalysts. 	,
 3. The Ylides in Organic Synthesis a. Phosphorus Ylides; Nomenclature and Preparation. Wittig olefination mechanism, stereoselectivity, cis- and trans selective reactions, Wittig reagents derived from α-halo carbonyl compounds. b. Modified Wittig, Horner – Wadsworth – Emmons, Stille-Gennar modification with achiral and chiral substrates, Peterson reaction, Julia Olefination. c. Sulfur Ylides; Sulfonium &sulfoxonium ylides in synthesis, diphenylcyclopropyl sulfonium ylides & their reactions with carbony compounds / Michael acceptors 	i 1
 4. Protecting Groups in Organic Synthesis a. Introduction and effective use of protecting groups, umpolung of reactivity. b. Common protective groups namely acetals & ketals, dithio acetal/ketals trialkylsilyl, TBDMS, THP, MOM, MEM, SEM & benzyl ether, methy ether, benzyl amine, Cbz, <i>t</i>-Boc, Fmoc, <i>t</i>-butyl ester and methods fo deprotection. Some examples of multistep synthesis using protection deprotection procedures. 	l r
 5. Asymmetric Synthesis a. Chiral pool (chiron approach). b. Chiral auxiliary approach; Oxazolidinone & norephedrine-derived chiral auxiliary controlled Diels-Alder reaction and alkylation of chiral enolates and aldol reaction, Alkylation using SAMP and RAMP. c. Chiral Reagents - Use of (-)-sparteine. d. Asymmetric catalysis; CBS catalyst, Ruthenium catalyzed chiral reductions of ketones, Catalytic asymmetric hydrogenation of alkenes, Asymmetric epoxidation (Sharpless and Jacobson), Sharpless asymmetric dihydroxylation reaction, Organocatalyzed aldol reaction (Use of proline). 	8
6. Halogenation and esterification reactions a. Formation of Carbon Halogen bonds; Substitution in saturated compounds	, 4

alcohols,	carbonyl	compounds,	substitution	at	allylic	and	benzylic
compound	ls, bromo	decarboxylatio	on (Hunsdiec	ker	reaction	n), F	inkelstein
reaction, i	odolactonis	sation.					
b. Acid and b	ase catalyz	ed esterification	on and hydrol	ysis.			

Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
Text Books/	1. W. Caruthers, I. Coldham, Modern Methods of Organic Synthesis,
References	Cambridge University Press, 4th Ed, 2016.
/ Readings	2. M. B. Smith, Organic Synthesis, McGraw-HILL, New York,
	International Edition, 1994.
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Chemistry,
	Oxford University Press, 2 nd edition, 2012.
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanisms, San
	Diego, CA: Harcourt /Academic Press, San Diego, 2002.
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods, Starting
	Materials, VCH Publishers Inc., New York, 1994.
	6. H. O. House, <i>Modern Synthetic Reactions</i> , W. A. Benjamin, 1965, 2nd
	Ed. (revised with corrections).
	7. M. Nogradi, <i>Stereoselective Synthesis</i> , VCH Publishers, Inc., Revised and Enlarged Edition, 1994.
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Springer
	India Private Limited, 5th Ed, 2007.
	9. T. Laue, A. Plagens, Named Organic Reactions, John Wiley and Sons,
	Inc., 2005.

Prerect for the course		Students should have studied organic chemistry courses at Chemistry in semester I	M.Sc.
Cours Object	е	 To study various principles of stereochemistry To understand the importance of chirality in organic syntheses To learn stereoselective reactions and toplan oxidation, reduced 	
Cours Outco		 Students will be in a position to explainstereochemistry and or transformations Students will be in a position to apply knowledge of various reactifunctional group manipulations. Students will be in a position to apply stereoselective reaction thesynthesis of chiral organic molecules 	ons in
		Content	Hrs
a. b. c. d.	in six r cyclohe Conforn bicyclic and dec and trar Fused p Perhydr hormon chromiu bonds, acids. Spirocy	electivity in cyclic compounds: Introduction, stereochemical control nembered rings, reactions on small rings, regiochemical control in exene epoxides, Stereoselectivity in bicyclic compounds mations, stability and reactivity of fused ring compounds: Fused e systems with small and medium rings: cis- and trans- decalones calols, Octahydronaphthalins (octalins), Bicyclo [4.3.0] nonane (cis- ns-hydrindanes) polycyclic systems: Perhydrophenanthrenes, Perhydroanthracenes, rocyclopentenophenanthrene system (steroids, triterpenoids and es). Conformations and reactivity towards esterification, hydrolysis, um trioxide oxidation, ionic additions of halogen (X ₂) to double formation and opening of epoxide ring, epoxidation by peroxy clic compounds	20
e.		ns with cyclic intermediates or cyclic transition state	
f. g. h	Stereoc substitu trans-cy	somerism due to axial chirality, planar chirality and helicity. hemistry and configurational (R/S) nomenclature in appropriately ted allenes, alkylidenecycloalkenes, spiranes, adamantoids, biaryls, vcloalkenes, cyclophanes and ansa compounds. omerism in biphenyls and bridged biphenyls	
		ion of bridged ring compounds	10
a.	Bicyclo hydroge and read	[2.2.1] heptane (norbornane): Geometry and topic relationship of ens, solvolysis of bicycle [2.2.1]heptyl systems, formation, stability ctivity of norbornylcation, relative stability and the rate of formation and exo isomers in both bornane and norbornane systems.	

b. Bicyclo [2.2.2] octane system: Geometry and topic relationship of hydrogens, solvolysis of bicycle [2.2.2]octyl system. i c. Other bridged ring systems: starting from bicycle [1.1.1]pentane to bicycle [3.3.3] undecane i d. Bicyclo system with heteroatom: the relative stabilities of tropine, pseudotropine and benzoyl derivatives of norpseudotropine. 14 a. Stereoselectivity: classification, terminology and principle. Selectivity in chemistry – substrate and product selectivity. 14 b. Stereoselective reaction of cyclic compounds: Introduction, reactions of four, five and six-membered rings. Conformational control in the formation of six-membered ring. 14 c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. 1 d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. 16 a. Oxidation and reduction reactions 16 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation out alses elenium dioxide, Pb(OAc)4, HIO4, OSO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Tr			
 c. Other bridged ring systems: starting from bicycle [1.1.1]pentane to bicycle [3.3.3] undecane d. Bicyclo system with heteroatom: the relative stabilities of tropine, pseudotropine and benzoyl derivatives of norpseudotropine. 3. Dynamic Stereochemistry: Stereoselective Reactions a. Stereoselectivity: classification, terminology and principle. Selectivity in chemistry– substrate and product selectivity. b. Stereoselectivity: classification, terminology and principle. Selectivity in chemistry– substrate and product selectivity. b. Stereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Comforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 4. Oxidation and reduction reactions a. Oxidation very (Photosensitised oxidation such as selenium dioxide, Pb(OAc)_h, HIO₄, OSO₄, RuO₄, DMSO (Swern) sodium bromate / CAN & NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AICl; reagents, enzymatic reduction involving liver alcohol dehydrogenasc/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin comdensation, of ther methods of reduction: Raney Ni desulphurisation, dimide. Pedagogy Lectures & tut	•		
d. Bicyclo system with heteroatom: the relative stabilities of tropine, pseudotropine and benzoyl derivatives of norpseudotropine. 14 3. Dynamic Stereochemistry: Stereoselective Reactions 14 a. Stereoselectivity: classification, terminology and principle. Selectivity in chemistry- substrate and product selectivity. 14 b. Stereoselective reaction of cyclic compounds: Introduction, reactions of four, five and six-membered rings. Conformational control in the formation of six-membered ring. 14 c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. 1.2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Comforth, Felkin-Anh. Specific reactions of acyclic alkenes: The Houk model 16 4. Oxidation and reduction reactions 16 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc) ₄ , HIO ₄ , OsO ₄ , RuO ₄ , DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. 16 Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Pedagogy Lectures & tutorials. Seminars / assignments / presen			
seudotropine and benzoyl derivatives of norpseudotropine. 14 3. Dynamic Stereoschemistry: Stereosclective Reactions 14 a. Stereosclectivity: classification, terminology and principle. Selectivity in chemistry- substrate and product selectivity. 14 b. Stereosclective reaction of cyclic compounds: Introduction, reactions of four, five and six-membered ring. 114 c. Diastereosclectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. 112-Addition outcomes d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cormforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. 16 c. Oxidation and reduction reactions 116 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc), HIO4, OSO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. 16 Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these coul			
3. Dynamic Stereochemistry: Stereoselective Reactions 14 a. Stereoselectivity: classification, terminology and principle. Selectivity in chemistry-substrate and product selectivity. 14 b. Stereoselective reaction of cyclic compounds: Introduction, reactions of four, five and six-membered rings. Conformational control in the formation of six-membered ring. 14 c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. 1.2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. 16 c. Stereoselective reaction of acyclic alkenes: The Houk model 16 4. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)4, HIO4, OSO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. 16 b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presenta	-	•	
 a. Stereoselectivity: classification, terminology and principle. Selectivity in chemistry– substrate and product selectivity. b. Stereoselective reaction of cyclic compounds: Introduction, reactions of four, five and six-membered rings. Conformational control in the formation of six-membered ring. c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 4. Oxidation and reduction reactions a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)₄, HIO₄, OsO₄, RuO₄, DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydride-transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ I. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction,	pseudo	Subplue and benzoyl derivatives of horpseudonopine.	
 chemistry– substrate and product selectivity. b. Stereoselective reaction of cyclic compounds: Introduction, reactions of four, five and six-membered rings. c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 4. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)₄, HIO₄, OSO₄, RuO₄, DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation, with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AICl₃ reagent, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. <i>Pedagogy</i> Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. <i>Text Books/</i> M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994,	3. Dynamic S	Stereochemistry: Stereoselective Reactions	14
 b. Stereoselective reaction of cyclic compounds: Introduction, reactions of four, five and six-membered rings. Conformational control in the formation of six-membered ring. c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 4. Oxidation and reduction reactions a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAC)4, HIO4, OSO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOC1, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, dimide. Pedagooy Text Books/ References M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975. <!--</td--><td></td><td></td><td></td>			
four, five and six-membered rings. Conformational control in the formation of six-membered ring. c. Diastercoselectivity: Introduction, making single diastercoisomers using stereospecific reactions of alkenes. d. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin- Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. e. Stereoselective reaction of acyclic alkenes: The Houk model 16 4. Oxidation and reduction reactions a. oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc) ₄ , HIQ, OSO, RuO ₄ , DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ I. M. B. Smith, J. March, Advanced Organic Chem			
of six-membered ring. c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 16 4. Oxidation and reduction reactions 16 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc) ₄ , HIO ₄ , OsO ₄ , RuO ₄ , DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. 16 b. Reduction reactions: Reduction of organic compounds using hydride-transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed.			
 c. Diastereoselectivity: Introduction, making single diastereoisomers using stereospecific reactions of alkenes. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 4. Oxidation and reduction reactions a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)4, HIO4, OsO4, RuO4, DMSO (Swern) sodium bromate / CAN & NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AICI₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. E.L			
stereospecific reactions of alkenes. d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin- Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 16 a. Oxidation and reduction reactions 16 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)4, HIO4, OsO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ References 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications,		•	
d. 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 4. Oxidation and reduction reactions a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc) ₄ , HIO ₄ , OsO ₄ , RuO ₄ , DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International			
using different predictive models such as, Cram Chelate, Cornforth, Felkin- Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 16 a. Oxidation and reduction reactions oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)4, HIO4, OSO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. 16 b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.		1	
Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed. . e. Stereoselective reaction of acyclic alkenes: The Houk model 16 4. Oxidation and reduction reactions 16 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)4, HIO4, OSO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. b. Reduction reactions: Reduction of organic compounds using hydride-transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AICl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.		• • •	
catalyzed. e. Stereoselective reaction of acyclic alkenes: The Houk model 4. Oxidation and reduction reactions 16 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)4, HIO4, OSO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCI, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydride-transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AICl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. /Readings 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.	0		
4. Oxidation and reduction reactions 16 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc) ₄ , HIO ₄ , OsO ₄ , RuO ₄ , DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. b. Reduction reactions: Reduction of organic compounds using hydride-transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. / Readings 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.			
 a. Oxidation reactions: Oxidation of organic compounds using Oppenauer oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)₄, HIO₄, OsO₄, RuO₄, DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydridetransfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. Z. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975. 	e. Stereo	selective reaction of acyclic alkenes: The Houk model	
oxidation, Swern oxidation. Other methods of oxidation such as selenium dioxide, Pb(OAc)4, HIO4, OsO4, RuO4, DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents.b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl3 reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide.PedagogyLectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.Text Books/1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed.2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.	4. Oxidation	and reduction reactions	16
 dioxide, Pb(OAc)₄, HIO₄, OsO₄, RuO₄, DMSO (Swern) sodium bromate / CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ <i>References</i> <i>M.</i> B. Smith, J. March, <i>Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure</i>, Wiley, 2006, 6th Ed. D. Nasipuri, <i>Stereochemistry of Organic compounds, Principles and applications</i>, New Age International Pvt. Ltd., 1994, 2nd Ed. E.L. Eliel, <i>Stereochemistry of Carbon Compound</i>, Tata McGraw Hill, 1975. 			
CAN &NaOCl, DDQ, Prevost's reagent and Woodward Conditions; Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents.b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl3 reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide.PedagogyLectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.Text Books/1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed./ Readings2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.			
Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation with molecular oxygen, aromatization, silver based reagents. b. Beduction reactions: Reduction of organic compounds using hydride-transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl ₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, dimide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. / Readings 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.			
 with molecular oxygen, aromatization, silver based reagents. b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ References / Readings D. Nasipuri, Stereochemistry of Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975. 			
 b. Reduction reactions: Reduction of organic compounds using hydride- transfer reagents and related reactions: MPV reduction, Trialkylborohydrides, LAH, mixed LAH-AlCl₃ reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975. 			
transferreagentsandrelatedreactions:MPVreduction,Trialkylborohydrides,LAH,mixedLAH-AlCl3reagents,enzymaticreductioninvolving liver alcoholdehydrogenase/NADH & Bakers' yeast,catalytichydrogenation,dissolvingmetalreductionsincludingacyloincondensation,othermethods of reduction:Raney Nidesulphurisation,di-di-dia <t< td=""><td></td><td></td><td></td></t<>			
Trialkylborohydrides, LAH, mixed LAH-AlCl3 reagents, enzymatic reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di- imide.PedagogyLectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.Text Books/ References1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed./ Readings2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.			
reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast, catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. /Readings 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.		8	
 catalytic hydrogenation, dissolving metal reductions including acyloin condensation, other methods of reduction: Raney Ni desulphurisation, di-imide. Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ I. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. Z. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975. 			
imide.PedagogyLectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.Text Books/1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed./ Readings2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.			
Pedagogy Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning. Text Books/ References 1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed. / Readings 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.	conde	nsation, other methods of reduction: Raney Ni desulphurisation, di-	
a combination of some of these could also be used to some extent. ICT mode should be preferred. Sessions should be interactive in nature to enable peer group learning.Text Books/ References1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed./ Readings2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.	imide		
mode should be preferred. Sessions should be interactive in nature to enable peer group learning.Text Books/ References1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed./ Readings2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.	Pedagogy	• •	•
enable peer group learning.Text Books/ References1. M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed./ Readings2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.			
Text Books/ References1.M. B. Smith, J. March, Advanced Organic Chemistry- 50 Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed./ Readings2.D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed.3.E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975.		-	ure to
 References Mechanism and Structure, Wiley, 2006, 6th Ed. 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975. 			
 / Readings 2. D. Nasipuri, Stereochemistry of Organic compounds, Principles and applications, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata McGraw Hill, 1975. 			iction,
 <i>applications</i>, New Age International Pvt. Ltd., 1994, 2nd Ed. 3. E.L. Eliel, <i>Stereochemistry of Carbon Compound</i>, Tata McGraw Hill, 1975. 	0		os and
3. E.L. Eliel, <i>Stereochemistry of Carbon Compound</i> , Tata McGraw Hill, 1975.	/ meanings		is unu
1975.			v Hill.
			,
4. W. Caruthers, I. Colddham, Modern Methods of Organic Synthesis,			thesis,
Cambridge University Press, 2016, 4th Ed.			

5.	J. Clayden, N. Greeves, S. Warren, Oxford, 2016.
6.	I. L. Finar, Stereochemistry and the Chemistry of Natural Products,
	ELBS, Vol. 2, Longman Edn, 1975. 5th Ed.
7.	E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Reinhart and Winston, 1965.
8.	F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry: Part A and
	B, Springer India Private Limited, 2007, 5th Ed.
9.	R. O. Norman J, M. Coxon, Principles of Organic Syntheses, CRC
	Press Inc, 1993, 3rd Ed.
10	. V.M. Potapov, A. Beknazarov, Stereochemistry, Central Books Ltd.,
	1980.
11	. D. G. Morris, Stereochemistry, Wiley-RSC, 2002, 1st Ed.
12	Clayden, Greeves, Warren, Wothers, Organic Chemistry, Oxford
	University Press, 2002, 2nd Ed.
13	M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., 1994,
	Revised and Enlarged Ed.

Course Code: CHOE-411					
Title of the Course: Practic	al Course in Organi	ic Chemistry-I			
Number of Credits: 02	Total Hours:60	Effective from AY: 2022-23			

D		1 1		
Prerequisites	Students should have studied chemistry practical courses at graduate level			
for the	or must have cleared change of discipline entrance test conducted by Goa			
course	University.			
Course	To translate certain theoretical concepts learnt earlier into experi			
Objective:	knowledge by providing hands on experience of basic laboratory tech	iniques		
	required for organic syntheses.			
Course	1. Students will be in a position to understand stoichiometric requirem	nents		
Outcome	during organic syntheses.			
	2. Students will be in a position to understand Safe and good laborato	ry		
	practices, handling laboratory glassware, equipment and chemical			
	reagents.	2		
	3. Students will be in a position to apply the practical knowledge to pe	erform		
	experiments involving common laboratory techniques like reflux,			
	distillation, steam distillation, vacuum distillation, aqueous extraction	,		
	thin layer chromatography (TLC) etc.	Т		
	Content	Hrs		
	periments from the list shall be conducted.			
	n to laboratory equipments, apparatus and safety	04		
	on laboratory equipments like fume hoods, vacuum pumps, weighing			
	be explained to the students.			
	to various types of quick fit joints and apparatus to the students.			
	f Safety Techniques:			
i) Disposal of c				
	tective equipment's			
iii) First aid				
· ·	ishers, types of fire			
	hemicals and risk assessment			
2. Laboratory	-	24		
-	lation (any one):			
	loromethane mixture using water condenser.			
	e and aniline using air condenser.			
b. Steam distilla				
-	<i>o</i> - and <i>p</i> - nitrophenols.			
-	from its suspension in water,			
iii. Clove oil fro				
-	n: Concept of induction of crystallization (any one)			
•	n of phthalic acid from hot water using fluted filter paper and			
stemless funnel				
	from boiling water			
iii. Naphthalene				
iv. Decolorisati	on and crystallization of brown sugar (sucrose) with animal charcoal			

Pedagogy:	Students should be given suitable pre- and post-lab assignments and explanation revising the theoretical aspects of laboratory	
	oil from lemongrass	
	hyde from cinnamon	
ii. Piperine from		
i. Caffeine from	tea powder.	
	m natural sources (Any two)	8
	of cuprous chloride.	
-	brochromate-alumina, MnO_2 .	
irradiation.	f oxidizing agent (any one): Pyridinium chlorochromate-silica,	
-	preparation of coumarin by the Knoevenagel condensation under MW	
benzoylacrylic a		
ii. Resorcinol to	resacetophenone, benzene and maleic anhydride to β -	
	and succinic anhydride	
	s reaction (any one):	
	action using 4-chlorobenzaldehyde as substrate.	
n. Acetoacetic e acetoacetate.	ster condensation. Preparation of ethyl <i>n</i> -dutylacetoacetate of ethyl	
g. Aldol condensation: Dibenzal acetone from benzaldehydeh. Acetoacetic ester condensation: Preparation of ethyl <i>n</i>-butylacetoacetate or ethyl		
f. Grignard reaction: Triphenylmethanol from benzoic acid ester or benzophenone.		
e. Bromination of an alcohol using CBr ₄ / triphenylphosphine.		
ii. Reduction of	<i>p</i> -nitro benzaldehyde to <i>p</i> -nitrobenzyl alcohol using NaBH ₄ .	
	o-nitroaniline to o-phenylenediamine using Sn/HCl	
d. Reduction (a	1 0 0	
	o camphor using Jones reagent.	
	ne from cyclohexanol.	
c. Oxidation (and i. Benzoic acid)		
	benzaldehyde to 3-nitrobenzaldehdye.	
	napththalene to 1-nitronaphthalene	
	of acetophenone to phenacyl bromide	
*	f <i>p</i> -bromoacetanilide.	
b. Aromatic ele	ctrophilic substitution (anyone):	
acetone.		
<u> </u>	ctrophilic substitution: Preparation of iodoform from ethanol &	
	thesis (Any Seven experiments)	24
	analgesic drugs f <i>o</i> and <i>p</i> -nitrophenols,	
	o and p-nitroanilines.	
-	romatography (any one):	
	ould be explained.	
	llation (any one): o-dichlorobenzene, diphenyl ether. Also use of	
or succinic acid		
	Simple or vacuum sublimation of camphor, naphthalene, anthracene	
using gravity fil	tration.	

	experiments prior to the conduct of each experiment. Each of the	
	experiments should be done individually by the students.	
References/R	1. A.I. Vogel, A., R. Tatchell , B. S. Furniss, A.J. Hannaford,	
eadings	Vogel's Textbook of Practical Organic Chemistry, 5 th Ed., Prentice	
	Hall; 2011.	
	2. D. Pasto, C. Johnson and M. Miller, <i>Experiments and Techniques</i>	
	in Organic Chemistry, 1 st Ed., Prentice Hall, 1991.	
	3. L.F. Fieser, K.L. Williamson, Organic Experiments, 7 th edition D.	
	C. Heath, 1992.	
	4. K.L. Williamson, K.M. Masters, Macroscale and Microscale	
	Organic Experiments, 6 th Edition, Cengage Learning, 2010	
	5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age	
	International, 5 th Edition, 2016.	
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.	
	7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry	
	Laboratory Standard and Microscale Experiments, Saunders	
	College Publishing, 3 rd edition, 2009.	
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing	
	House, 2014.	

Course Code: CHOE-412		
Title of the Course: Practical Co	ourse in Organic Chem	istry-II
Number of Credits: 02	Total Hours: 60	Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry practical courses at gradua	ate level
for the	or must have cleared change of discipline entrance test conducted	
course	University.	e j 200
Course	To translate certain theoretical concepts learnt earlier into experim	ental
Objective:	knowledge by providing hands on experience of basic laboratory t	
e sjeen e	required for organic syntheses.	1
Course	1. Students will be in a position to adopt Safe and good laboratory	practices.
Outcome	handling laboratory glassware, equipment and chemical reagents.	1 ,
	2. Students will be in a position to understand and calculate store	chiometric
	requirements during organic syntheses.	
	3. Students will be in a position to perform common laboratory tec	hniques
	including reflux, distillation, vacuum distillation, aqueous extraction	-
	layer chromatography (TLC).	
	Content	Hrs
Minimum 13 e.	xperiments from the list shall be conducted.	
	n to laboratory equipments, apparatus and safety	04
	Hazards in Chemical Laboratory, Risk assessment	
	and Emergency procedures	
	r Techniques (Any Two)	08
a. Simple distil		
	lation of thionyl chloride under anhydrous condition	
	stillation under Nitrogen atmosphere	
b. Fractional d		
	dichloromethane mixture using water condenser.	
	nd cyclohexane by fractionating column.	
	tillation under inert atmosphere	
•	n of DMF, <i>o</i> -dichlorobenzene, POCl ₃	
•	Chromatography	
	and isolation of mixture of acids by using Preparative TLC.	
	on and isolation of mixture of phenols by using Preparative TLC.	
	on and isolation of pharmaceutical drugs using Preparative TLC.	
0 1	nthesis (Any Four)	16
-	benzene by Sandmeyer reaction	
	acolone rearrangement	
	on of Maleic acid (Hydrogen balloon)	
	of nitrostyrene from aldehyde	
	of α,β -dibromocinnamic acid	
	f nitro compounds	
	Urea from ammonium cyanate	
	e Organic synthesis (Any Two)	08
a. Reduction u	sing ball milling technique	

b. Oxidation of 2	2° alcohol using KMnO ₄ /Alumina by grinding technique.	
c. Synthesis of (\pm)-Binol from β-naphthol	
d. Hunsdiecker	reaction of cinnamic acid derivatives	
e. Beckmann rea	arrangement of oxime derivatives	
4. Two-step Or	ganic Synthesis (Any Two)	16
	enzoic acid-Ethyl Benzoate	
b. Phthalic anhy	dride – Phthalimide – Anthranilic acid.	
c. Methyl benzo	ate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid	
d. Chlorobenzen	e - 2, 4 - dinitrochlorobenzene - 2, 4-dinitrophenol	
e. Acetanilide –	p–Bromo acetanilide – p –Bromoaniline	
f. Acetophenone	e – Oxime – Acetanilide	
5. Separation, I	solation and Identification of Organic compounds (Any One)	08
	urification and identification of compounds of binary mixture (Solid-	
Solid, Solid-liqu	id and Liquid-liquid) using the TLC and column chromatography,	
chemical tests. I	R spectra to be used for functional group identification.	
Pedagogy	Students should be given suitable pre- and post-lab assignments and	
	explanation revising the theoretical aspects of laboratory experiments	prior
	to the conduct of each experiment.	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford, J	Vogel's
/Readings	Textbook of Practical Organic Chemistry, 5th Ed., Prentice Hall; 2011	
	2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 nd Ed., 20	009
	3. L. F. Fieser, K. L. Williamson "Organic Experiments" 7th edition	n D. C.
	Heath, 1992.	
	4. K. L. Williamson, K. M. Masters, Macroscale and Microscale Organic	
	Experiments, 6 th Edition, Cengage Learning, 2010	
	5. R. K. Bansal, Laboratory Manual in Organic Chemistry, New	w Age
	International, 5 th Edition, 2016.	_
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.	
	7. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry Labo	oratory
	Standard and Microscale Experiments, Saunders College Publ	ishing,
	3 rd edition, 2009.	-
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House	,
	2014.	

Course Code: CHPC-411 Title of the course: General Physical ChemistryNumber of Credits: 04Total Hours: 60

Effective from AY: 2022-23

Prerequisites for the course:	Students should have studied chemistry courses at graduate level or have cleared change of discipline entrance test conducted by University.	
Course Objective:	 Introduction of various concepts on thermodynamics. Introduction of electro chemistry and kinetics. Learning quantum chemistry. 	
Course Outcome:	 Students should be in a position to understand and explain various concepts in physical chemistry. Students should be in a position to apply these concepts during th course in physical chemistry. 	e lab
	Content	Hrs
a. Introduc logarithmic numbers b. Linear e c. Basic ru and cha curve fi	ical Preparations tion to various functions and function plotting (exponential, c, trigonometric etc.), functions of many variables. Complex s and complex functions. quations, vectors, matrices and determinants. les of differentiation and integration, Partial differentiation, location practerization of critical points of a function, Regression methods, tting. ction to series, convergence and divergence, power series, Fourier	12
e. Probabil	ity (permutations and combinations).	
b. Schrodin in one (quantiz c. Hydroge wave fu d. Hückel energy,	rs, Functions, Eigen value equations, Postulates. nger equation, application to simple system viz. free particle, particle	20
3. Thermody		12
a. Thermo Critical properti entropy relation b. Joule-Th Joule-T	dynamic properties: Gas laws, Real gasses, Boyle temperature, temperature, State and path properties. Intensive and extensive	

except function	hird law of thermodynamics. Need for the third law. Apparent ions to third law. Application of third law. Use of thermodynamic ons in predicting direction of chemical change. Entropy and third law	
	modynamics.	
solid s	equilibria: Phase rule, Discussion of two component systems forming solutions with and without maximum or minimum in freezing point Systems with partially miscible solid phases.	
liquid tempe	component systems: Graphical representation. Three component systems with one pair of partially miscible liquids. Influence of rature. Systems with two pairs and three pairs of partially miscible	
liquids	s. The role of added salts.	
4. Electroch	emistry	8
a. EMF s	eries, The cell potential: The Nernst equation, Cells at equilibrium.	
	nination of thermodynamic functions.	
b. Decom	position potential and overvoltage, electronegativity, basic	
	, completeness of deposition, Separation with controlled potentials,	
	nt current electrolysis, composition of electrolyte, potential buffers,	
	al characteristics of metal deposits.	
c. Electro	plating and electroless plating, electrosynthesis.	
	pts of acid-base aqueous and non-aqueous solvents, hard and soft	
	ase concept and applications.	
5. Chemical	Kinetics	8
a. Genera	l introduction to various types of order of reaction including fractional	
	Molecularity of the reaction.	
b. Introduction to reversible and irreversible reactions and reactions leading to		
equilibrium. Van't Hoffs equation and analysis of Gibbs free energy of		
equilit	prium reactions.	
c. Collis	on Theory and Maxwell Boltzmann distribution of energies of	
collidi	ng molecules (derivation not required). The concept of collisional	
cross s	ection and reactive cross section and its significance.	
	d. Comparative study of transition state and collision state theory (derivation	
not rec	uired).	
e. Reactio	on Mechanisms: elementary reactions, Consecutive elementary	
reactions	, steady state approximation, the rate determining step and pre-	
equilit	oria	
f. Free	radical reactions, Complex reactions such as acetaldehyde	
decom	position and reaction between H ₂ and Br ₂ , Homogeneous reactions	
and ac	id-base catalysis.	
g. Elemer	ntary enzyme reactions. Lineweaver-Burk plot and its analysis	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignmen	
	presentations / self-study or a combination of some of these can als	
	used. ICT mode should be preferred. Sessions should be interactive	ve in
	nature to enable peer group learning.	
Text	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8th Ed., Ox	ford
Books/	University Press, (2007) New Delhi.	
References	2. G. M. Barrow, <i>Physical Chemistry</i> , 5 th Ed., Tata McGraw Hill, (2	016)

/ Readings	New Delhi.
	3. J. E. House, <i>Principles of Chemical Kinetics</i> , 2 nd Ed., Academic Press,
	(2007) Elsevier Burlington, USA
	4. I. N. Levine, Quantum Chemistry, 7th Ed., Prentice-Hall, (1999) New
	Delhi.

Course Code: CHPC-412Title of the course: Quantum Chemistry and Statistical ThermodynamicsNumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

D		
Prerequisites	Students should have studied physical chemistry courses at N	A.Sc.
for the	Chemistry in semester I	
course:		
Course	1. Introduction of various concepts of quantum chemistry.	
Objective:	2. To introduce various concepts of statistical thermodynamics.	
Course Outcome:	 Students should be in a position to understand and explain various concepts of quantum chemistry viz. the wave function and applications. Students should be able to explain various concepts in statistical 	S
	thermodynamics viz. the partition function and applications.	
	Content	Hrs
duality, interpre quantiza b. Postula particle properti Harmor c. Approx Born-O Slater o Aufbau Perturba simple s d. MO t Unifica chemica bonding Applica	gin of quantum mechanics: Planck's quantum theory, wave particle uncertainty principle concept of wave function, the Born tation of wave function. Normalization and orthogonalizations, ation, Eigen values and Eigen functions. tes of quantum mechanics; Schrödinger equation for free particle, in a box, degeneracy. Quantum mechanical operators and their es, commutation relations, Hamiltonian and Laplacian operators, nic oscillators, Angular momentum, Ladder Operators. imate methods, Schrödinger equation, its importance and limitations, ppenheimer approximation, Anti-symmetric wave functions and leterminants (many electron system e.g. He atom), Exclusion and principle, Variation method, Linear Variation Principle, ation theory (first order non-degenerate) and their applications to systems. heory, Hückel MO theory, Bond-order, Charge density matrix, tion of HMO and VB theory, their applications in spectroscopy and al reactivity, electron density forces and their role in chemical g. Hybridization and valence MOs of H ₂ O, NH ₃ and CH ₄ . tion of Hückel Theory to ethylene, butadiene and benzene	34
molecul		26
	Thermodynamics	26
microst weights	anguage of statistical thermodynamics: Probability, ensemble, ate, degeneracy, permutations and combinations. Configuration and , the dominant configuration. The Boltzmann distribution. The lar partition function: its interpretation and its relation to uniform levels.	
b. Transla diatomi	tional, Rotational, Vibrational and Electronic Partition functions for c molecules. Relation between thermodynamic functions and n functions and their statistical interpretations. Equilibrium	

const	ants from partition function.
	1
	of Equipartition energy. Theories of specific heat of solids.
1	barison between Einstein and Debye theories.
d. Conce	pt of symmetric and antisymmetric wave functions. Ortho and para
hydro	gens. Quantum Statistics: Fermi-Dirac (FD)and Bose-Einstein (BE)
statist	ics. Comparison between MB, FD and BE Statistics.
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
Text	1. P. W. Atkins and J. D. Paula, <i>Physical Chemistry</i> , 8 th Ed., Oxford
Books/	University Press, (2007) New Delhi.
References	2. G. M. Barrow, <i>Physical Chemistry</i> , 5 th Ed., Tata McGraw Hill, (2016)
/ Readings	New Delhi.
	3. M.C. Gupta, <i>Statistical Thermodynamics</i> , Wiley Eastern, (1990) New
	Delhi.
	4. I. N. Levine, <i>Quantum Chemistry</i> , 7 th Ed., Prentice-Hall, (1999) New
	Delhi.
	5. H. Metiu, Physical Chemistry, Statistical Mechanics, Taylor & Francis,
	(2006) New York

Course Code: CHPC-413Title of the course: Group Theory and Molecular SpectroscopyNumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisites	Students should have studied physical chemistry courses at M	A.Sc.
for the	Chemistry in semester I	
course:		
Course Objective:	 To introduce concepts in Group Theory and it applications to chemistry. To introduce some advance topics in spectroscopy. 	
Course Outcome:	 Students should be in a position to explain various concepts in Gr Theory. Should be able to apply character table to solve various problems. Students should be in a position to apply the knowledg spectroscopy for their dissertation and research work. 	e of
	Content	Hrs
 a. Symmet multipli Differer b. Point gr represer Irreduci represer c. Standar applicat Selectic orbitals (SALCs molecul Raman d. Space Q notatior 	eory for Chemistry ry elements and symmetry operations, Concept of group and group cation tables, order of the group, classes and subgroups in a group, nt types of groups (cyclic, abelian and non-abelian groups). roups, Matrix representations of a group, Reducible and Irreducible ntations groups, Great Orthogonality Theorem, Properties of ble representations, Mulliken symbols for Irreducible ntations, Character tables. d reduction formula, Direct products of representations and it tions Quantum Chemistry and spectroscopy: Vanishing of integrals, on rules. Applications of group theory for hybridization of atomic . Projection operator and Symmetry adapted linear combinations s), MO treatment (within Huckel Molecular Orbital Theory) of large les with symmetry. Applications of group theory to Infra-red and spectroscopy. Groups: Symmetry elements, Schoenflies, and Hermann Mauguin h, Representation of point groups and space groups, point symmetry, ymmetry, glide plane, helical screw axis	30
	e, IR and Raman Spectroscopy	12
	cal treatment of Rotational and Vibrational spectroscopy.	12
b. Princip Theory,	le of Fourier Transform (FT) spectroscopy, FTIR spectroscopy: instrumentation and applications.	
Raman	n theory of Raman effect, Raman shift, Instrumentation, Resonance spectroscopy, Complimentary nature of IR and Raman spectroscopy ture determination, Applications.	
3. NMR Spec		10
	rinciples of NMR	10
b. Theory of	of pulse NMR and Fourier analysis, FT-NMR.	
c. Solid sta	te NMR, magic angle spinning (MAS), dipolar decoupling and cross	

polari	zation, applications of solid-state NMR.	
d. Double	e resonance, NOE, Spin tickling, Solvent and shift reagents, Structure	
detern	nination by NMR.	
4. ESR Spe	ctroscopy	8
•	y and experimental techniques, Identification of odd-electron species	
	yl and ethyl free radicals) and radicals containing hetero atoms.	
b. Spin	trapping and isotopic substitution, Spin densities and McConell	
relatio	onship, Double resonance techniques.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignment	nts /
	presentations / self-study or a combination of some of these can als	so be
	used. ICT mode should be preferred. Sessions should be interactive	ve in
	nature to enable peer group learning.	
Text	1. P. W. Atkins and J. D. Paula, Physical Chemistry, 8th Ed., Ox	xford
Books/	University Press, (2007) New Delhi.	
References	2. F.A. Cotton, <i>Chemical Applications of Group Theory</i> , 3 rd Ed.,	John
/ Readings	Wiley & Sons-Asia, (1999) New Delhi	
	3. K. V. Raman, Group Theory and its applications to chemistry,	Tata
	McGraw-Hill, (1999) New Delhi	
	4. C. N. Banwell and E.M. McCash, Fundamentals of Molec	cular
	Spectroscopy, Tata McGraw-Hill, (1994) New Delhi.	
	5. W. Kemp, NMR in Chemistry a multinuclear introduction, Macm	nillan
	(1986).	
	6. R.S. Drago, <i>Physical Methods in Chemistry</i> , W.B. Saunders Com	pany
	(1977).	

Prerequisites for the course:	Students should have studied physical chemistry courses at M Chemistry in semester I	M.Sc.
Course Objective:	 To introduce concepts of reaction kinetics and thermodynamics To provide fundamental knowledge of theories that govern cher reactions To introduce newer classes of reaction types and their kinetics To introduce latest developments in the advance instrum techniques and methods for monitoring reaction kinetics dynamics. 	ental
Course Outcome:	 Students should be in a position to understand and explain va concepts in chemical kinetics and thermodynamics. Students should be in a position to apply these concepts durin lab course in experimental physical chemistry. 	
	Content	Hrs
 Theories of reaction rates Generalized kinetic theory and extended collision theory. Concept of collisional number, collisional frequency factor, collisional and reactive cross section, steric factor, microscopic rate constant. Assumptions and limitations of collision theory. Conventional transition state theory, equilibrium hypothesis and derivation of reaction rates. Thermodynamic formulation of transition state theory. Arrhenius temperature dependent and independent activation energy and its significance. Assumptions and limitations of transition state theory. Lindemann-Hinshelwood theory of thermal unimolecular reactions. Elementary reactions in solutions Collisional kinetics in solution, effect of solvent polarity, solvent cohesion 		
energy, and ion-dipole and dipole-dipole reactions on reaction rates.		
3. Kinetics of Homogeneous reactions 5 Homogeneous kinetics, enzymatic reactions and Michaelis-Menten, 5 Lineweaver-Burk and Eadie Analysis, Autocatalytic reactions. 5		
4. Composite reactions Types of composite mechanisms, kinetics of parallel and consecutive reactions. Introduction to shock tube method and its use in combustion analysis.		
5. Fast Reactions Photochemical fast reactions, Pulsed laser photolysis, and its use in monitoring fast reactions.		
 6. Reversible, Irreversible and Oscillatory reactions. a. Kinetics of reversible reactions and graphical analysis b. Oscillatory reactions, Voltera-Lotka hypothesis of oscillatory reactions. The 		

-	significance of bi-stability in the Briggs-Rauscher Reaction and Belousov-			
Zhabotinskii reaction. 7. Reaction Dynamics				
	ion to potential energy surfaces, description of H_2O and HF potential	2		
energy surface diagrams.				
	ium Thermodynamics			
a. Impo				
	et differentials. Cyclic rule; partial derivatives.			
	b. Heat change at constant pressure, volume; relationship between Qp &Qv			
Heat capacities Cp, Cv; Concept of Entropy, entropy change for an ideal gas at different conditions; Entropy of mixing of ideal gas and the Gibbs				
paradox; Physical significance of entropy.				
c. Work function and free energy function; Variation of free energy with				
	temperature and pressure; Maxwell relations; Thermodynamic equations of			
state; Gibbs-Helmholtz equation.				
d. Therm	d. Thermodynamics of open systems, partial molar properties; chemical			
potent	ial, variation of chemical potential with temperature and pressure;			
Gibbs	-Duhem equation; Duhem-Margules equation; applications of			
chemi	cal potential; thermodynamic derivation of phase rule.			
9. Non-Equilibrium thermodynamics				
a. Concept of internal entropy and spontaneity of a process in relation to free				
	7. Chemical affinity and extent of a reaction. Phenomenological Laws			
and Onsager's Reciprocal Relations; Conservation of Mass and energy in				
	and open system.			
	b. Postulates of non-equilibrium thermodynamics. 13			
	Entropy production in heat flow.			
	Entropy production of chemical reactions and			
	production/entropy flow in open system.			
	c. Principle of microscopic reversibility and the Onsager reciprocal relations;			
Validity of Onsager's equation and its verification; Application of				
Irreversible Thermodynamics to Biological Systems; Application to thermo-				
	c and electrokinetic phenomena.			
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignment			
	presentations / self-study or a combination of some of these can als			
	used. ICT mode should be preferred. Sessions should be interactive	ve in		
	nature to enable peer group learning.			
Text	1. K. J. Laidler, <i>Chemical Kinetics</i> , 3 rd Ed.; Pearson Education, 1	987;		
Books/	(printed in India by Anand Sons, 2004).	h — •		
References	2. P.W. Atkins and J. De. Paulo, Atkins' Physical Chemistry, 8 ^t	" Ed.		
/ Readings	Oxford University Press, 2007.			
	3. J. I. Steinfeld, J. S. Francisco and W. L. Hase, <i>Chemical Kirk</i>	netics		
	and Dynamics, 2 nd Ed.; Prentice Hall, 1999.	ı .		
	4. D. K. Chakrabarty and B. Viswanathan, <i>Heterogeneous Cata</i>	lysis,		
	New Age International Publishers, 2008.			
	5. S. K. Scott, Oscillations, waves and Chaos in chemical kind	etics,		

Oxford Science Publications, 1994.
6. T. S. Briggs, and W. C. Rauscher, An oscillating iodine clock, J.
Chem. Educ., 1973.
7. G. W. Castellan, <i>Physical Chemistry</i> , 3 rd Ed.; University of
Maryland, Addison-Wesley Publishing Company, 1983.
8. E. N. Yeremin, Fundamentals of Chemical Thermodynamics
Firebird Publications, 1978.
9. D. A. McQuarrie & John D. Simon, Physical Chemistry: A
molecular approach, Viva Books Pvt. Ltd., New Delhi.
10. S. R. De Groot, Non-equilibrium thermodynamics, Dover
Publications, 2011.
11. A. Kleidon, R.D. Lorenz (Eds.), Non-equilibrium thermodynamics
and the production of entropy: life, earth, and beyond, Springer
Berlin Heidelberg New York, 2005.
12. J. Rajaram, J. C. Kuriacose, S. N. & Co., Thermodynamics for
students of Chemistry, Classical, Statistical and Irreversible,
Jalandhar, 1996.
13. P. W. Atkins & J. De. Paulo, Atkins' Physical Chemistry, 8th Ed.;
Oxford Univ. Press, 2007.

Programme: M.Sc. Part-I (Chemistry)

Course Code: CHPC-415 Title of the course: Electrochemistry and Surface Studies Number of Credits: 04 Total Hours: 60

Prerequisi	Students should have studied physical chemistry courses at M.Sc. Ch	emistry in	
tes for the			
course:			
Course Objective:	 To introduce some core concepts of electrochemical processes incluinteraction theories, electrified interfaces, electrochemical kind thermodynamics To develop problem solving skills in electrochemistry To introduce fundamental concepts and applications of electrochemist today life eg. batteries, solar cells, capacitors 	etics and	
	1. Students will be in a position to explain various fundamental and cor of electrochemistry.	e concepts	
Course Outcome:	2. Students should be in a position to apply the knowledge of electroche their dissertation and research work	emistry for	
	3. Students should be in a position to apply these concepts during the lal physical chemistry	o course in	
	Content	Hrs	
1. Ionic Iı	nteractions and Conductance in Electrolytes	10	
a. Ion-so	olvent interactions. Born Theory, validity and limitations.		
b. Solva	tion number and coordination number.		
c. Ion-ic	n interactions and Debye-Huckel theory of ion cloud.		
d. Appli	cations of Debye- Huckel equation. Concept of ionic strength and		
activity	coefficient.		
e. Debye	e-Huckel limiting law and its modifications.		
f. Debye	e-Huckel-Onsager equation, validity and limitations.		
g. Einste	ein-Smoluchowski equation.		
h. Influe	nce of ionic atmospheres on ionic migration: Relaxation and		
Electrop	horetic effects.		
i. Condu	ctance in strong and weak electrolytes.		
2. Electri	fied Interfaces	10	
a. Forn	nation of an electrode/electrolyte interface and its structure.		
	rizable and non-polarizable interfaces.		
	ential difference across electrical double layer: outer potential,		
	ace potential, inner potential and relationship between them,		
	nical and electrochemical potentials.		
	modynamics of electrified interface: Surface tension, surface		
	ss, Electro-capillary curves. Determination of surface excess.		
	dition for thermodynamic equilibrium at electrified interface.		
	eralized Gibbs equation, Lippmann equation and electrical		

	capacitance at the doublelayer.	
	f. Models of the electrified interface.	
	g. Ion adsorption at the electrode: hydrated electrodes, contact adsorption,	
	Gibbs adsorption equation.	
3.	Pure Liquid Electrolytes: Ionic Liquids	8
	a. Thermal loosening of ionic lattice.	
	b. Ionic liquids in surface electrochemistry: Electrode/electrolyte interfacial	
	processes in ionic liquids.	
	c. Electrochemistry of Ti (IV) in Ionic liquids.	
4.	Electrode Kinetics and Corrosion	
	a. Disturbance of electrode equilibrium, cause of electron transfer, fast and	
	slow systems and their current-potential relationship.	
	b. Butler-Volmer equation and its low and high field	
	approximations.	
	c. Nernst equation as a special case of B-V equation.	12
	d. Tafel plots for anodic and cathodic processes.	
	e. Fundamentals of Impedance spectroscopy; determining exchange	
	current densities and rate constants from impedance plots.	
	f. Principles of corrosion, electrochemical methods of avoiding corrosion.	
	g. pH-potential diagrams: Pourbaix diagram for corrosion of iron and	
	stability of water.	
5.	Colloidal Chemistry	
	a. Interaction of double layers and stability of Sols. DLVO theory.	
	b. Colloidal electrolytes, critical micelle concentration, Kraft temperature.	
	c. Electrokinetic phenomena: Electroosmosis, streaming potential and	8
	current, electrophoresis. Zeta potential.	
	d. Donnan membrane equilibria.	
	e. Micellesandreversemicelles, Emulsions and Microemulsions.	
6.	Electrochemical Energies: Conversion and Storage	
	a. Thermodynamics of electrochemical energy conversion.	
	b. Batteries: Basic principles; rating and shelf life. Zinc-Manganese dioxide:	
	Leclanche and alkaline batteries. Lithium ion batteries and recharge	
	ability.	
	c. Fuel cells: Principle of a hydrogen-oxygen fuel cell. Classification of fuel	7
	cell systems based on types of electrolytes/temperature. Efficiency w.r.t.	7
	thermodynamic efficiency, reliability and economic benefits. Direct	
	methanol-polymer electrolyte fuel cell and electro-catalysts - a case	
	study. Reactions occurring in various fuel cells and calculation of their	
	electrode and cell potentials.	

7. Photoe	electrochemistry		
a. Semi	conductor/Electrolyte Interface: Band edge and Band bending.		
b. Light	absorption and carrier generation at the electrode: photoinduced		
charg	charge transfer, hot carriers.		
c. Photo	pelectrodes: p-type photocathode, n-type photoanode.	5	
d. Deter	mination of surface states.		
e. Photo	pelectrocatalysis: photoelectrochemical water splitting and CO ₂		
reduc	ction.		
	of photoelectrochemical devices.		
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments / press self-study or a combination of some of these can also be used. ICT more be preferred. Sessions should be interactive in nature to enable p learning.	ode should	
Text	1. J.O.M.Bockris & A.K.N.Reddy, Modern Electrochemistry, Springer	r India,	
Books/	Pvt.Ltd,2000,Vol.1,2and3.		
References	2. D. Crow, Principles and Applications of Electrochemistry, Blackie		
/ Readings	AcademyandProfessional, 1994.		
	3. C.M.A.Brett&A.M.O.Brett, <i>Electrochemistry:Principles, methods</i>	and	
	applications, Oxford, NewYork Oxford University Press, 1993.		
	4. R.D.Vold&M.J.Vold, <i>ColloidandInterfaceChemistry</i> , Addison-Wes 1983.	ley,	
	5. A. Vincent & B. Sacrosati, Modern Batteries, John Wiley, NewYo	ork,1997.	
	6. J.O.M.Bockris&S.Srinivasan, Fuelcells: Their Electrochemistry, Mc	Graw-	
	HillBookCo., 1969.		
	7. A. A. J. Torriero, Electrochemistry in Ionic Liquids, Vol. 1: Fundament	ntals,	
	Springer International Publishing, 2015		
	8. B. A.J., Stratmann M., Licht D, Encyclopedia of Electrochemistry,		
	Semiconductor Electrodes and Photoelectrochemistry, Wiley-VCH, 200	2.	
•			

Programme: M.Sc. Part-I (Chemistry)

Prerequisites	Students should have studied chemistry courses at graduate level or	
for the	have cleared change of discipline entrance test conducted by	Goa
course:	University.	
	1. To develop experimental skills on basic lab techniques in physical	
Course	chemistry	
Objective:	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills	
Course	1. Students will able to explain various fundamental lab techniques.	
Outcome:	2. Students should be in a position to apply the knowledge for their	
	dissertation and research work. Content	Hrs
Minimum	13 Experiments to be performed per Semester	<i>П</i> /s
		50
	umental Experiments (any 7)	
-	he kinetics of hydrolysis of ethyl acetate and to determine a) Energy	
	on b) Entropy of activation and c) Free energy change.	
2. To determ	ine the order of reaction between potassium persulphate and	
potassium	iodide by graphical, fractional change and differential methods.	
3. To study	the three-component system such as acetic acid, chloroform;	
and water	and obtain tie line.	
4. To determ	nine the molecular weight of polyvinyl alcohol by viscosity	
measurem		
5. To study t	the electro-kinetics of rapid reaction between SO_4^{2-} and Γ in	
-	is solution.	
-	nine the buffer capacity of acidic buffer solution.	
	nine the partial molal volume of ethanol-water mixture at a	
given tem	•	
	re energy content of various types of plastics using bomb	
calorimet	•	
	nine number average molecular weight of a polymer sample	
	direct titration method.	
	gate basic hydrolysis of ethyl acetate at four different temperatures	
and find ou	at energy of activation	
Instrumen	tal Experiments (any 6)	
	mine the degree of hydrolysis of salt of weak base and strong	
	g conductometer.	20
	ermine the dissociation constants of a tribasic acid (Phosphoric	30
12. 10 det	entitie are dissociation constants of a trousic acid (r hosphoric	

acid obta	in derivative plot to get equivalence point.		
13. To d	13. To determine formal redox potential of Fe^{2+}/Fe^{3+} and Ce^{3+}/Ce^{4+} system		
obtain de	rivative plot to get equivalence point.		
14.To study	y spectrophotometric titration of ferrous ammonium sulphate		
with pot	tassium permanganate (or dichromate vs permanganate)		
15.To deter	rmine Avogadro's number by improved electroplating.		
16.To dete	rmine the zeta potential of colloidal system and investigate		
the effect	ct of different surfactants on stability of the colloids		
17.To ver	rify the Kohlrausch's law for weak electrolyte by		
conduct	ometry		
18.To deter	rmine the transport numbers of Cu^{2+} and SO_4^{2-} ions in $CuSO_4$		
solution	solution by Hittorf's method.		
Pedagogy	Pedagogy Mainly pre-laboratory exercises Seminars / term papers /assignments		
	presentations / lab hand-out /self-study or a combination of some of these		
	can also be used. ICT mode should be preferred. Sessions should	1 be	
	interactive in nature to enable peer group learning.		
Text			
Books/			
References	Longman.		
/ Readings	 3. A.M.James, "Practical Physical Chemistry", Longman. 4. D.P. Shoemaker & C.W. Garland, "Experimental Physical Chemistr 	[,] "	
	McGraw-Hill.	у,	

Programme: M.Sc. Part-I (Chemistry)

D		
Prerequisites	Students should have studied chemistry courses at graduate level or	must
for the course:	have cleared change of discipline entrance test.	
course.	1. To develop experimental skills on basic lab techniques in physica	1
Course	chemistry	1
<i>Objective:</i>	2. To acquire skills for data analysis and interpretation	
0.05000000	3. To help the students to develop research skills	
<i>C</i>	1. Students will gain knowledge of various fundamental lab technique	les.
Course	2. Students should be in a position to apply the knowledge for their	
Outcome:	dissertation and research work.	
	Content	Hrs
Minimum 1	3 experiments to be conducted per Semester	35
Non-instru	umental Experiments (any 8)	
1. To determin	e the radius of a molecule by viscosity measurements.	
2. To determin	e ΔG , ΔH and ΔS of silver benzoate by solubility product method	
3. To investiga	the the adsorption of oxalic acid by activated charcoal and test the	
Ũ	Freundlich and Langmuir's isotherms.	
•	e the molecular weight of a given polymer by turbidimetry	
	he rate of reaction between ethyl bromoacetate and sodium	
•	e kinetically.	
-	e the percentage composition of a given mixture of two liquids by	
	eter method.	
e		
-	e kinetics of hydrolysis of methyl acetate and to determine a)	
•••	activation b) Entropy of activation and c) Free energy change.	
	e kinetics of the reaction between Potassium per sulphate $(K_2S_2O_8)$,	
	sium iodide (KI), and to determine a) Energy of activation b)	
1.	activation and c) Free energy change.	
	e the order of reaction for hydrolysis of ethyl acetate by graphical,	
	change and differential methods.	
10. To determi	ne the molecular weight of polystyrene by viscosity measurement.	
Instrumental	Experiments (any 5)	
11. To determ	ine the relative strength of chloroacetic acid and acetic acid by	0.5
conductom	etry.	25
	ine the degree of hydrolysis of salt of weak base and strong acid	
using cond		
-	ne the composition of a mixture of acetic acid, dichloroacetic acid	

and hydrochloric acid by conductometric titration.

- 14. To determine the dissociation constants of monobasic acid and dibasic acid and obtain derivative plot to get equivalence point.
- 15. To determine the redox potential of Fe^{2+}/Fe^{3+} system by titrating it with standard K₂Cr₂O₇ solution.

16. To study the electrodeposition of metal.

Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assignment	
	presentations / lab hand-out /self-study or a combination of some of t	these
	can also be used. ICT mode should be preferred. Sessions should	d be
	interactive in nature to enable peer group learning.	
Text	1. A. Finlay & J.A. Kitchener, "Practical Physical Chemistry", Longn	nan
Books/	2. F. Daniels & J.H. Mathews, "Experimental Physical Chemistry",	
References	Longman.	
/ Readings	3. A. M. James, F. E. Prichard "Practical Physical Chemistry", Longn	nan
7 Reddings	4. D.P. Shoemaker & C.W. Garland, "Experimental Physical Chemist	ry",
	McGraw-Hill.	

ANNEXURE II

M.Sc. Pharmaceutical Chemistry Part-I (SEM I and SEM II) Syllabus

		SEM I	
Sr. No.	Subject code	Paper title	Credits
1.	CHOC-411	Fundamentals of Organic Chemistry (DSCC)	4
2.	CHHC-411	Fundamentals of Pharmaceutical Chemistry-I (DSCC)	4
3.	CHPC-411	General Physical Chemistry (DSCC)	4
4.	CHAC-411	Techniques in Analytical Chemistry-I (DSCC)	4
5.	CHOE-411	Practical Course in Organic Chemistry-I (DSOC)	2
6.	CHOE-412	Practical Course in Organic Chemistry-II (DSOC)	2
7.	CHHE-411	Practical Course in Pharmaceutical Chemistry-I (DSOC)	2
8.	CHHE-412	Practical Course in Pharmaceutical Chemistry-II (DSOC)	2
9.	CHPE-411	Practical Course in Physical Chemistry-I (DSOC)	2
10.	CHPE-412	Practical Course in Physical Chemistry-II (DSOC)	2
11.	CHAE-411	Practical Course in Analytical Chemistry-I (DSOC)	2
12.	CHAE-412	Practical Course in Analytical Chemistry-II (DSOC)	2
		SEM II (Pharmaceutical Chemistry)	L
1.	CHHC-412	Fundamentals of Pharmaceutical Chemistry-II (DSCC)	4
2.	СННС-413	Drug Product Formulation, Development and Manufacture (DSCC)	4
3.	CHHC-414	Drug Design, Discovery and Development (DSCC)	4
4.	СННС-415	Biopharmaceutics and Pharmacokinetics (DSCC)	4

Course Code: CHOC-411

Title of the course: Fundamentals of Organic ChemistryNumber of Credits: 04Total Hours: 60Effecti Effective from AY: 2022-23

<i>Prerequisites for the</i>			
course:	University.		
Course Objective:	 To study the various concepts based on molecular orbital theory. To understand the concepts of topicity, prostereoisomerism and chemo-, regio- and stereoselectivity in organic reactions. To understand the mechanistic aspects of various type of reactions in organic synthesis. 		
Course Outcome:	 Students will be in a position to evaluate the effect of delocalizat electrons & presence or absence of aromaticity in organic compoun Students will be able to apply various concepts in stereochemistr understand stereochemical outcome in a reaction. Students shall be in a position to understand/propose plausible mechanism of organic reactions. 	.ds. y to	
	Content rbitals and delocalized chemical bonding	Hrs 08	
systems, fronti b.Conjugation, (types and exa c. Aromaticity	 description of molecular orbitals of simple acyclic and monocyclic er molecular orbitals. cross conjugation, resonance, hyperconjugation and tautomerism mples). : Origin of Huckel's rule, examples of aromatic, non-aromatic and compounds; concept of Mobius aromaticity. 		
HSAB concept base strength. b. Concept of s c. Electrophilic	Reactivity icity and pKa of organic compounds; Acid and base strengths; t & Factors affecting it, effect of structure & medium on acid and superacids and superbases. city&nucleophilicity, examples of ambident nucleophiles & Including revision of aromatic electrophilic and nucleophilic	08	
Substitution) 3.Stereochemistry a. Brief revision of configurational nomenclature: R & S; D & L; E & Z; cis & trans and <i>syn&anti</i> nomenclature. Chirality in molecules with two and more chiral centres.b. Conformational analysis of open chain compounds (Butane, 2, 3-butane diol, 2,3-dibromobutane etc.). <i>Erythro</i> and <i>threo</i> nomenclature.c. Topicity and Prostereoisomerism: Topicity of ligands and faces-homotopic, enantiotopic and Cram's rule /diastereotopic ligands and faces.d. Introduction to chemoselective, regioselective and stereoselective reactions.		14	

F	
e. Stereochemistry of <i>cis</i> - and <i>trans</i> -decalins, conformation and reactivity of cyclohexane and substituted cyclohexanes, cyclohexene / cyclohexanone.	
conformational isomerism and analysis in acyclic and simple cyclic systems –	
substituted ethanes, cyclopentane, cyclohexane cycloheptane, cyclooctane and	
decalins,	
f. optical isomerism - optical activity - molecular dissymmetry and chirality -	
elements of symmetry. optical isomerism in biphenyls, allenes and spirans - optical	
isomerism of nitrogenous compounds racemisation and resolution.	
4.Reaction Mechanism	08
a. Brief revision of carbocations, carbanions, free radicals, carbenes, Arynes and	
nitrenes with reference to generation, structure, stability and reactivity;	
b. Types of mechanisms, types of reactions, thermodynamic and kinetic control.	
c. The Hammond postulate and principle of microscopic reversibility,	
d. Methods of determining reaction mechanisms like-	
i. Identification of products,	
ii. Determination of the presence of intermediates (isolation, detection,	
trappingandaddition of suspected intermediate,	
iii. Isotopic labelling,	
iv. Stereochemical evidence,	
v. Kinetic evidence and	
vi. Isotope effect (at least two reactions to exemplify each method be	
studied)	
studied)	
5.Aliphatic Nucleophilic substitution	08
a. Brief revision of nucleophilic substitutions with respect to Mechanism, various	00
factors affecting such reactions;	
b. The Neighbouring Group Participation (NGP)/ Anchimeric assistance: General	
approach to various NGP processes; NGP by unshared/lone pair of electrons;	
NGP by π -electrons; NGP by aromatic rings (formation of phenonium ion	
intermediate); NGP by sigma bonds with special reference to bornyl and nor-	
bornyl system (formation of nonclassical carbocation)	
6.Elimination reactions	08
	08
a. The E2, E1 and E1cB mechanisms. Orientation of the double bond, Saytzeff and	
Hofmann rule. b. Effects of changes in the substrate, base, leaving group and medium on	
I D HUBCLE OF CHARGES IN THE SUBSTRATE BASE LEAVING GROUP and medium on	
i. Overall reactivity,	
i. Overall reactivity, ii. E1 vs. E2 vs. E1cB	
i. Overall reactivity,ii. E1 vs. E2 vs. E1cBiii. Elimination vs substitution, Mechanism and orientation in pyrolytic <i>syn</i>	
 i. Overall reactivity, ii. E1 vs. E2 vs. E1cB iii. Elimination vs substitution, Mechanism and orientation in pyrolytic <i>syn</i> elimination (various examples involving cyclic and acyclic substrates to be 	
i. Overall reactivity,ii. E1 vs. E2 vs. E1cBiii. Elimination vs substitution, Mechanism and orientation in pyrolytic <i>syn</i>	

7. Selective r	eagents for Organic transformation	06
a. Oxidation	of organic compounds, PCC, PDC and MnO ₂ , ozonolysis, peracids.	
b. Reduction	of organic compounds: NaBH ₄ , LAH, DIBAL reduction and	
reduction wit	h borane and dialkylboranes. Clemmensen reduction, Birch	
reduction and	Wolff-Kishner reduction	
Pedagogy	Mainly lectures and tutorials. Seminar	s/term
	papers/assignments/presentations/ self-study or a combination of so	me of
	these can also be used. ICT mode should be preferred. Sessions sho	uld be
	interactive in nature to enable peer group learning.	
Text Books/	1. W. Caruthers, I. Coldham, Modern Methods of Organic Syn	thesis,
References	Cambridge University Press, 4 th Ed., 2016.	
/ Readings	2. M. B. Smith, Organic Synthesis, McGraw-HILL, New	York,
	International Edition, 1994.	
	3. J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic Cher	nistry,
	Oxford University Press, 2 nd Ed., 2012.	
	4. R. Bruckner, Advanced Organic Chemistry – Reaction Mechanism	s, San
	Diego, CA: Harcourt /Academic Press, San Diego, 2002.	
	5. J. Fuhrhop, G. Penxlin, Organic Synthesis – Concepts, Methods, St	arting
	Materials, VCH Publishers Inc., New York, 1994.	
	6. H. O. House, <i>Modern Synthetic Reactions</i> , W. A. Benjamin, 2 nd Ed	
	7. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc., R	evised
	and Enlarged Edition, 1994.	
	8. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry, Sp	oringer
	India Private Limited, 5 th Ed, 2007.	~
	9. T. Laue, A. Plagens, <i>Named Organic Reactions</i> , John Wiley and	Sons,
	Inc., 2005.	

Course Code: CHHC-411

Title of the course: Fundamentals of Pharmaceutical Chemistry-I

Number of Credits: 04Total Hours: 60Effective from AY: 2022-23

	Students should have studied chemistry courses at graduate level o	r must
Prerequisite	have cleared change of discipline entrance test conducted by	
s for the	University. Knowledge of Pharmaceutical Chemistry is added adv	0
course:	but not mandatory. This is to understand the basics in pharmace	eutical
	chemistry and importance of chemistry in pharmacy.	
	1. To get introduced to pharmaceutical chemistry and terms	
Course	involved.	a with
Objective:	2. To understand the various classes of drugs with example special reference to Structure, IUPAC name, Mechania	
	action, Structure Activity Relationships and Synthesis.	
	1. Students will be able to identify the examples in different class	ses of
	drugs.	
	2. Students will be able to write IUPAC names and Structure of dru	gs.
Course	3. Students will be in a position to understand the mechanism of act	tion of
Outcome:	selected classes of drugs.	
	4. The students will have a clear understanding of concepts on	SAR
	analysis. 5. The students will be able to apply synthetic organic che	mistry
	knowledge in devising a synthesis for a drug.	iiiisu y
	Content	Hrs
1. Pharm	aceutical chemistry, physicochemical properties of drugs, drug	
	olism and assay of drugs: Role of Chemistry in Pharmacy:	
	action to pharmaceutical chemistry. Need to study pharmaceutical	12
chemis		
	acokinetics, Pharmacognosy, Materia medica, Toxicology,	
	acopoeia, Pharmacophore- Effect of functional groups on	
	logical activity of drugs: hydroxy, acidic, alkyl, aldehyde, ketone,	
	halogens, ether and ester groups with examples.	
•	ochemical properties of Drugs: Effect of Solubility, Partition	
-	cient, Ionisation constant, Surface Active agents, Chelation,	
Hydrogen bonding, stereoisomers on the pharmacological action of drugs		
(specific example of API to be given). Drug Action, Drug Metabolism-		
· 1	cance of drug metabolism. Phase I, Phase II pathways with	
reactions. Factors on which drug metabolism depends. Assay of drugs-		
	cal, biological and immunological assay.	
	n of Chemotherapeutic Drugs: Development of the following	
	ling structure activity relationship (S.A.R.), mechanisms of	
	outline of synthesis (\$), chemical nomenclature, generic names	
	ouverie of synthesis (\$), chemical nomenclatary generic names	

(GN) and side effects (SE) (outline of synthesis only of those marked\$)	
2. Anti-Infective agents-I:	
Antiseptics and Disinfectants: Alcohols, substituted phenols, methenamine	
mandalate, Chloramine-T (MA), 8-hydroxy quinoline derivatives, Acridine	
derivatives, Mercurials like (Mercurochrome, Thiomersal) and Nitrofurantoin	
derivatives, Triclosan \$. Antitubercular agents- Aminosalicylic acid, PAS	12
(MA), Pyrazinamide ^{\$} , Ethambutol (SAR and ^{\$}), Clofazemine, Antimalarials :	
Life cycle of parasite, drug acting on different stages- Quinine, Chloroquine\$,	
Primaquine, Trimethoprim, Proguanil (MA), Cycloguanil, Drug combinations.	
Antiamoebics: General aspect of infection, Life cycle of parasite, Hydroxyl	
quinolines, Metronidazole (SAR and \$), Lucanthone (MA), Anthelmentics:	
-	
Diethylcarbamazine, Niclosamide, Mebendazole\$, Oxamniquine.	
3. Anti-Infective agents-II:	
Antivirals including drugs acting on HIV Idoxuridines, Amantadine	
Hydrochloride\$, Acylclovir. Antineoplastics: 6-Mercaptopurine (MA),	
Thiotepa\$, Chlorombucil, Taxol, Antifungal: Antibiotics like Nystatin,	
Tolnaflate\$, Clotrimazole\$. Sulfonamides and other antifolics: Sulfonamides	
(MA) and other para-aminobenzoic acid antagonist, Sulfacetamide\$,	12
Sulfamethoxazole, Newer antibacterial agents: Quinoline carboxylic acids such	
as Ciprofloxacin, Temafloxacin. Hypoglycemics: Insulin and various sulfonyl	
ureas like tolbutamide\$, Tolazamide, phenformin, Glipizide.	
4. Anti-lipidemics, Diuretics, and diagnostic agents:	12
Anti-lipidemics: Clofibrate\$, nicotinic acid, boxidine Diuretics: Acid forming	
osmotic diuretics, Mercurials-Meralurides, Sulfonamides-Acetazolamide\$.	
Chlorthiazide\$, Hydrochlorthiazide, Ethacrynic acid. Synthetic sweeteners.	
Diagnostic agents Inorganic compounds- Iodoxyl, Iodophendylate. Dyes-	
Rose Bengal, Fluorescein, Aminohippuric acid\$.	
5. Hypotensive agents, General and Local Anaesthetics: Hypotensive agents	12
acting on vascular smooth muscles: Nitrites, Amylnitrites, Glyceryl nitrite\$,	
Pentaerythritol tetranitrate, Isosorbide dinitrate (MA). General Anaesthetics:	
Ether, Nitrous oxide, Halothane\$, Ultra short acting Barbiturates-Thiopental	
sodium \$. Local anaesthetics: Cocaine, Benzocaine\$, Procaine (MA),	
Lidocaine\$, Purgatives and cathartics: Phenolphthalein, Castor oil.	
Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignr	nente /
<i>Pedagogy</i> Mainly lectures and tutorials. Seminars / term papers /assignr presentations / self-study or a combination of some of these can	
used. ICT mode should be preferred. Sessions should be interact	
nature to enable peer group learning.	

Text	1. D. A. Williams & T. L. Lemke, Foye's principles of medicinal chemistry				
Books/Ref	5th edition, Lippincott Williams and Wilkins, 2006.				
erences /	2. J. M. Beale & J. M. Block, Wilson & Gisvold's Text book of Organic				
Readings	Medicinal & Pharmaceutical Chemistry, Lippincott Williams and				
0	Wilkins; 2004.				
	3. D. J. Abraham & D.P. Rotella, Burger's Medicinal Chemistry Drug				
	Discovery and Development (John Wiley & Sons N.Y), 7 th edition, 2010.				
	4. D. Shriram, P. Yogeshwari, Medicinal Chemistry, Pearson Education				
	2007.				
	5. G. L. Patrick: Introduction to Medicinal Chemistry, Oxford University				
	Press, UK. 6 th edition, 2017.				
	6. D. Lednicer & L.A. Mitscher, The Organic Chemistry of Drug Synthesis.				
	(6 volume set) III. John Wiley & Sons, 2005.				
	7. H. Singh & V. K. Kapoor: Medicinal and Pharmaceutical Chemistry,				
	Vallabh Prakashan, Pitampura, New Delhi, 2010.				
	8. G. R Chatwal, Medicinal Chemistry (Organic Pharmaceutical				
	Chemistry), Himalaya Publishing house, 2002.				

Course Code: CHPC-411 Title of the course: General Physical ChemistryNumber of Credits: 04Total Hours: 60

Prerequisites	Students should have studied chemistry courses at graduate level or	must	
for the	have cleared change of discipline entrance test conducted by	Goa	
course:	University.		
Course Objective:	2 Introduction of electro chemistry and kinetics		
	1. Students should be in a position to understand and explain variou	S	
Course	concepts in physical chemistry.		
Outcome:	2. Students should be in a position to apply these concepts during th course in physical chemistry.	e lab	
	Content	Hrs	
a. Introduct logarithmic numbers b. Linear ec c. Basic rul and cha curve fit d. Introduc series	ical Preparations tion to various functions and function plotting (exponential, c, trigonometric etc.), functions of many variables. Complex s and complex functions. quations, vectors, matrices and determinants. les of differentiation and integration, Partial differentiation, location aracterization of critical points of a function, Regression methods, tting. etion to series, convergence and divergence, power series, Fourier ity (permutations and combinations).	12	
2. Quantum		20	
a. Operator b. Schrodin in one (quantiz c. Hydroge wave fu d. Hückel energy,	s, Functions, Eigen value equations, Postulates. ager equation, application to simple system viz. free particle, particle	20	
3. Thermody		12	
a. Thermo Critical properti entropy, relations b. Joule-Th	dynamic properties: Gas laws, Real gasses, Boyle temperature, temperature, State and path properties. Intensive and extensive es. Exact and inexact differentials. Internal energy, enthalpy, free energy and their relations and significances. Maxwell s. Thermodynamic equations of state nomson effect. Joule-Thomson coefficient for van der Waals' gas. homson effect and production of low temperature, adiabatic		

References	2. G. M. Barrow, Physical Chemistry, 5 th Ed., Tata McGraw Hill, (2016)
/ Readings	New Delhi.
	3. J. E. House, Principles of Chemical Kinetics, 2 nd Ed., Academic Press,
	(2007) Elsevier Burlington, USA
	4. I. N. Levine, Quantum Chemistry, 7th Ed., Prentice-Hall, (1999) New
	Delhi.

Course Code: CHAC-411 Title of the course: Techniques in Analytical Chemistry - I Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

Students should have studied chemistry courses at graduate level or must **Prerequisite** s for the have cleared change of discipline entrance test conducted by Goa course: University. 1. Learning various methods of data handling in analysis. 2. Understanding the significance of sampling and calibration techniques. 3. Understanding principles and applications of various types of Course techniques in *Objective:* 4. Training the students to deduce structures based on IR, NMR, MS combined data. 1. Students will be able to analyse the role of statistical tools for determination of error and organised data management for systematic interpretation. 2. Student will be able to apply the sampling and calibration methods for Course obtaining reliable results. Outcome: 3. Students will be able to understand basic principles and scope of different methods of Analysis 4. Students will be able to solve problems based on IR, NMR, MS combined spectral data. Content Hrs 1. Analytical Objectives and Data Handling 5 Importance of analytical chemistry in research and industry; statistics and data handling in analytical chemistry, standard operating procedures, good laboratory practices: quality assurance, method validation and quality control. 2. Sampling and Calibration Techniques 5 Sampling and sample preparation, general steps in chemical analysis, calibration of glass wares. Finding the best straight line-least square regression, correlation coefficient; Calibration curves, standard addition technique and internal standards. Chemical concentrations. 3. Classical methods of Analysis 6 Gravimetry and Titrimetric methods, Principle, methodology, Advantages & Disadvantages over instrumental methods. Conditions for identifying a given reaction as method of Analysis, Classification of reactions in titrimetric analysis (Acid-Base, redox, complexometric and precipitation), Standard solutions and their preparation. Selection of Visual Indicators in titrimetric Analysis 4. Introduction to Electroanalytical techniques 4 Introduction to electrochemical cell, electrode potential, Classification of electroanalytical techniques, working principles, and their applications 5. Introduction to Thermoanalytical techniques 5 Principle, Instrumentation and applications of Thermogravimetric Analysis

(TGA), Differential Thermal Analysis (DTA), and Differential Scanning Calorimetry (DSC). Numericals based on TGA.	
	15
6. Introduction to Chromatographic Techniques	15
a. Principles of chromatography, classification of chromatographic techniques	
based on mechanism of retention, configuration, mobile and stationary	
phase. Efficiency of separation- plate theory (theoretical plate concept) and	
rate theory (van Deemter equation).	
b. Principles and applications of Paper chromatography, thin layer	
chromatography, HPTLC, Size exclusion and Ion exchange	
chromatography. Counter-current chromatography for isolation of natural	
products.	
c. Gas and Liquid Chromatography: Introduction; Instrumental Modules; The	
Separation System; Choice of Conditions of Analysis; Sample Inlet	
Systems; Detectors; Practical Considerations in Qualitative and Quantitative	
Analysis; Coupled Systems-introduction to GCMS, LCMS; Applicability-	
interpretation and numericals.	20
7. Introduction to Spectroscopic Techniques	20
a. Interaction of Electromagnetic Radiation with Matter: Electromagnetic	
spectra, regions of spectrum, numericals.	
b. Ultraviolet and visible Spectroscopy: Electronic spectra and Molecular	
structure: types of electronic transition, Chromophore and auxochrome,	
absorption by isolated chromophore, conjugated chromophores, aromatic	
compounds, inorganic chelates. Calculating λ max for Conjugated Dienes,	
Trienes, polyenes, α , β -unsaturated carbonyl compounds, Numericals.	
Choices and effect of solvents on UV-Vis. Quantitative Calculations: Beer-	
Lambert Law; Mixtures of absorbing species-laws of additivity of	
absorbance; calibration curve for calculation of unknown; Spectrometric	
errors in measurement; Deviation from Beer-Lambert Law - chemical	
deviation, instrumental deviation; Numericals for quantitative analysis using	
UV-VIS spectroscopy.	
c. Infrared Spectroscopy: Infrared absorption and molecular structures,	
molecular vibrations, types of vibrations, IR spectra, overtones and bands-	
basis of NIR absorption. Spectra interpretation, Frequencies of functional	
group, Spectral Databases, Identification of unknown compounds.	
d. Spectrometric Instrumentation of UV-Vis and IR: Sources, monochromators,	
sample cells, detectors, instrumental wavelength and absorption calibration.	
e. Proton and Carbon NMR Spectroscopy: Theory of NMR, Instrumentation,	
Chemical shift, factors influencing chemical shift, solvents used in NMR,	
spin-spin splitting, coupling constant calculation, factors influencing	
coupling constant.	
f. Mass Spectrometry: Principle, Instrumentation and various fragmentation	
patterns.	
g. Conjoint spectrometry problems: Structural elucidation of organic molecules	
using IR, UV, NMR and MS.	
h. Raman Spectroscopy: Theory, Basic instrumentation and Structural analysis	
using Raman Spectra.	
aonig ranan spoora	

(Note: A	Assignment based on all above spectrometric methods should be given
	nt. More weightage of lectures shall be given for solving IR and NMR
	blems for structure elucidation)
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignments /
1 cuugogy	presentations / self-study or a combination of some of these can also be
	used. ICT mode should be preferred. Sessions should be interactive in
	nature to enable peer group learning.
Text	1. G. D. Christian, <i>Analytical Chemistry</i> , 6 th Ed.; Wiley, 2004.
Books/	2. J. H. Kennedy, <i>Analytical Chemistry: Principles</i> , 2 nd Ed.; Saunders
Reference	College Publishing, 1990.
s/	3. G. W. Ewing, Instrumental Methods of Chemical Analysis, 5 th Ed.;
Readings	McGraw- Hill Int., 1985.
0	4. W. Kemp, Organic Spectroscopy, 3rd Ed.; Palgrave, 1991.
	5. D. A. Skoog, D. M. West, F. J. Hollar, S. R. Crouch, Fundamentals of
	Analytical Chemistry, 9th Ed.; Cengage learning, 2014.
	6. F. J. Holler, D. A. Skoog, S. R. Crouch, Principles of Instrumental
	Analysis, 6 th Ed.; Thomson Books, 2007.
	7. H. Willard, L. L. Merritt, J. A. Dean, F. A. Settle, <i>Instrumental methods</i>
	of Analysis, 7th Ed.; HCBS Publishing, 2004.
	8. C. N. Banwell, E. M. McCash, Fundamentals of Molecular
	Spectroscopy, 4 th Ed.; Tata McGraw-Hill, 2006.
	9. R. M. Silverstein, F. X. Webster, <i>Spectrometric identification of Organic</i>
	<i>Compounds</i> , 6 th Ed.; Wiley, 1998.
	10. H. Gunzler, A. Williams, <i>Handbook of Analytical Techniques</i> , 1 st Ed.; Wiley, 2001.
	11. P. S. Kalsi, <i>Spectroscopy of Organic Compounds</i> , 2 nd Ed.; New Age
	International, 2000.
	12. E. Pretsch, P. Buhlmann, C. Affolter, <i>Structural Determination of</i>
	Organic Compounds, 2 nd Ed.; Springer, 2005.
	13. L. D. Field, S. Sternhell, J. R. Kalman; Organic Structures from
	Spectra, 4 th Ed.; Wiley, 2007.
	14. R. A. Day, A. L. Underwood, <i>Quantitative Analysis</i> , 6 th Ed.; Prentice
	Hall, 2001.
	15. B. K Sharma, Instrumental methods of chemical analysis, Goel
	Publishing House, Meerut, 2004.
	16. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	Coordination Compounds, 6 th Ed.; Wiley, 2009.
	17. P. J. Larkin, Infrared and Raman Spectroscopy: principles and spectral
	<i>interpretation</i> , 2 th Ed.; Elsevier, 2018.
	18. J. Mendham, R. C. Denney, J. D. Barnes, M. Thomas, B. Sivasankar,
	<i>Vogel's Text Book of Quantitative Chemical Analysis,</i> 6 th Ed.; Pearson,
	2009.

Course Code: (
Number of Cre	Irse: Practical Course in Organic Chemistry-Idits: 02Total Hours:60Effective from AY: 2022-23			
Number of crea				
Prerequisites	Students should have studied chemistry practical courses at graduate level			
for the	or must have cleared change of discipline entrance test conducted b	oy Goa		
course	University.			
Course	To translate certain theoretical concepts learnt earlier into experi	imental		
Objective:	knowledge by providing hands on experience of basic laboratory tech required for organic syntheses.	nniques		
Course	1. Students will be in a position to understand stoichiometric requiren	ients		
Outcome	during organic syntheses.	ients		
ourcome	2. Students will be in a position to understand Safe and good laborato	rv		
	practices, handling laboratory glassware, equipment and chemical	-)		
	reagents.			
	3. Students will be in a position to apply the practical knowledge to p	erform		
	experiments involving common laboratory techniques like reflux,			
	distillation, steam distillation, vacuum distillation, aqueous extraction	,		
	thin layer chromatography (TLC) etc.			
	Content	Hrs		
Minimum 13 ex	periments from the list shall be conducted.			
1. Introduction	to laboratory equipments, apparatus and safety	04		
a. Use of comm	on laboratory equipments like fume hoods, vacuum pumps, weighing			
balance etc. to l	be explained to the students.			
b. Introduction	to various types of quick fit joints and apparatus to the students.			
c. Discussion of	f Safety Techniques:			
i) Disposal of c				
ii) Usage of pro	tective equipment's			
iii) First aid				
, 0	ishers, types of fire			
,	hemicals and risk assessment			
2. Laboratory	-	24		
-	lation (any one):			
	loromethane mixture using water condenser.			
	e and aniline using air condenser.			
b. Steam distilla				
-	<i>o</i> - and <i>p</i> - nitrophenols.			
-	from its suspension in water,			
iii. Clove oil from cloves.				
•	n: Concept of induction of crystallization (any one)			
-	n of phthalic acid from hot water using fluted filter paper and			
stemless funnel				
	from boiling water			
iii. Naphthalene				

in Developingtion and arrestallization of brown sugar (sugress) with animal abarasal	
iv. Decolorisation and crystallization of brown sugar (sucrose) with animal charcoal	
using gravity filtration.	
d. Sublimation: Simple or vacuum sublimation of camphor, naphthalene, anthracene	
or succinic acid (any one).	
e. Vacuum distillation (any one): o-dichlorobenzene, diphenyl ether. Also use of	
nomograph should be explained.	
f. Thin layer Chromatography (any one):	
i. Separation of <i>o</i> and <i>p</i> -nitroanilines.	
ii. Separation of analgesic drugs	
iii. Separation of o and p-nitrophenols,	
3. Organic synthesis (Any Seven experiments)	24
a. Aliphatic electrophilic substitution: Preparation of iodoform from ethanol &	
acetone.	
b. Aromatic electrophilic substitution (anyone):	
i. Preparation of <i>p</i> -bromoacetanilide.	
ii. Bromination of acetophenone to phenacyl bromide	
iii. Nitration of napththalene to 1-nitronaphthalene	
iv. Nitration of benzaldehyde to 3-nitrobenzaldehdye.	
c. Oxidation (any one)	
i. Benzoic acid from toluene.	
ii. Cyclohexanone from cyclohexanol.	
iii) Isoborneol to camphor using Jones reagent.	
d. Reduction (any one)	
i. Reduction of <i>o</i> -nitroaniline to <i>o</i> -phenylenediamine using Sn/HCl	
ii. Reduction of <i>p</i> -nitro benzaldehyde to <i>p</i> -nitrobenzyl alcohol using NaBH ₄ .	
e. Bromination of an alcohol using CBr ₄ / triphenylphosphine.	
f. Grignard reaction: Triphenylmethanol from benzoic acid ester or benzophenone.	
g. Aldol condensation: Dibenzal acetone from benzaldehyde	
h. Acetoacetic ester condensation: Preparation of ethyl <i>n</i> -butylacetoacetate or ethyl	
acetoacetate.	
i. Cannizzaro reaction using 4-chlorobenzaldehyde as substrate.	
j. Friedel Craft's reaction (any one):	
i. using toluene and succinic anhydride	
ii. Resorcinol to resactophenone, benzene and maleic anhydride to β -	
benzoylacrylic acid	
k. Solvent free preparation of coumarin by the Knoevenagel condensation under MW	
irradiation.	
1. Preparation of oxidizing agent (any one): Pyridinium chlorochromate-silica,	
pyridinium chlorochromate-alumina, MnO ₂ .	
m. Preparation of cuprous chloride.	
4. Isolation from natural sources (Any two)	8
i. Caffeine from tea powder.	
ii. Piperine from pepper.	
iii. Cinnamaldehyde from cinnamon	
iv. Lemongrass oil from lemongrass	
Pedagogy: Students should be given suitable pre- and post-lab assignments and	

	explanation revising the theoretical aspects of laboratory					
	experiments prior to the conduct of each experiment. Each of the					
	experiments should be done individually by the students.					
References/R	1. A.I. Vogel, A., R. Tatchell , B. S. Furniss, A.J. Hannaford,					
eadings	Vogel's Textbook of Practical Organic Chemistry, 5 th Ed., Prentice					
	Hall; 2011.					
	2. D. Pasto, C. Johnson and M. Miller, <i>Experiments and Techniques</i>					
	in Organic Chemistry, 1 st Ed., Prentice Hall, 1991.					
	3. L.F. Fieser, K.L. Williamson, Organic Experiments, 7 th edition D.					
	C. Heath, 1992.					
	. K.L. Williamson, K.M. Masters, Macroscale and Microscale					
	Organic Experiments, 6 th Edition, Cengage Learning, 2010					
	5. R.K. Bansal, Laboratory Manual in Organic Chemistry, New Age					
	International, 5 th Edition, 2016.					
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.					
	7. O.R. Rodig, C.E. Bell Jr. and A.K. Clark, Organic Chemistry					
	Laboratory Standard and Microscale Experiments, Saunders					
	College Publishing, 3 rd edition, 2009.					
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing					
	House, 2014.					

Course Code: CHOE-412

Title of the Course: Practical Course in Organic Chemistry-IINumber of Credits: 02Total Hours: 60Effective from AY: 2022-23

Number of Cred	lits: 02	Total Hours: 60	Effective from AY: 2022-	-23	
Prerequisites	Students sho	uld have studied chemistry	practical courses at graduate	e level	
for the		•	ne entrance test conducted by		
course	University.				
Course	•	certain theoretical concepts	s learnt earlier into experiment	ntal	
Objective:		-	rience of basic laboratory tec		
5	0	organic syntheses.	5	1	
Course		1. Students will be in a position to adopt Safe and good laboratory practices,			
Outcome handling laboratory glassware, equipment and chemical reagents.					
	0		derstand and calculate stoich	niometric	
		during organic syntheses.			
	-		orm common laboratory tech	niques	
	including ref	lux, distillation, vacuum di	istillation, aqueous extraction	ı, thin	
		atography (TLC).	· •		
	· · ·	Content		Hrs	
Minimum 13 exp	periments from	n the list shall be conducted	d.		
		y equipments, apparatus		04	
a. Common H	azards in Cher	nical Laboratory, Risk asso	essment		
b. Accidents a	nd Emergency	/ procedures			
2. Laboratory	Fechniques (A	Any Two)		08	
a. Simple distilla	ation				
i. Simple distilla	ation of thiony	l chloride under anhydrous	s condition		
ii. Simple dist	illation under l	Nitrogen atmosphere			
b. Fractional dis	stillation				
i. Chloroform-d	ichloromethan	e mixture using water cond	denser.		
ii. Toluene and	d cyclohexane	by fractionating column.			
c. Vacuum distil	llation under in	nert atmosphere			
Dry Distillation	of DMF, o-dia	chlorobenzene, POCl ₃			
d. Thin layer Ch	romatography	,			
i. Purification an	nd isolation of	mixture of acids by using	Preparative TLC.		
ii. Purification	and isolation	of mixture of phenols by u	using Preparative TLC.		
iii. Purification	n and isolation	of pharmaceutical drugs u	using Preparative TLC.		
3. Organic Syn	thesis (Any Fo	our)		16	
a. <i>p</i> -Iodonitrobe	nzene by Sand	Imeyer reaction			
b. Pinacol- Pina	colone rearran	gement			
		tid (Hydrogen balloon)			
d. Preparation of					
e. Preparation of					
f. Reduction of					
	Urea from amn				
g. Synthesis of t	orea moni anni	nomum cyanate			

a. Reduction us	ing ball milling technique				
b. Oxidation of	b. Oxidation of 2° alcohol using KMnO ₄ /Alumina by grinding technique.				
	c. Synthesis of (\pm) -Binol from β -naphthol				
d. Hunsdiecker	reaction of cinnamic acid derivatives				
e. Beckmann re	arrangement of oxime derivatives				
4. Two-step Or	ganic Synthesis (Any Two)	16			
	Senzoic acid-Ethyl Benzoate				
•	/dride – Phthalimide – Anthranilic acid.				
•	pate- <i>m</i> -nitrobenzoate- <i>m</i> -nitrobenzoic acid				
d. Chlorobenzer	ne - 2, 4 - dinitrochlorobenzene - 2, 4-dinitrophenol				
e. Acetanilide –	p–Bromo acetanilide – p –Bromoaniline				
f. Acetophenone	e – Oxime – Acetanilide				
• /	Isolation and Identification of Organic compounds (Any One)	08			
a. Separation, p	urification and identification of compounds of binary mixture (Solid-				
Solid, Solid-liqu	uid and Liquid-liquid) using the TLC and column chromatography,				
chemical tests.	IR spectra to be used for functional group identification.				
Pedagogy	gogy Students should be given suitable pre- and post-lab assignments and				
	explanation revising the theoretical aspects of laboratory experiments prior				
	to the conduct of each experiment.				
References					
/Readings	Textbook of Practical Organic Chemistry, 5 th Ed., Prentice Hall; 2011.				
	2. K. Tanaka, Solvent-free Organic Synthesis, Wiley-VCH, 2 nd Ed., 2009				
	3. L. F. Fieser, K. L. Williamson "Organic Experiments" 7th edition D. C.				
	Heath, 1992.				
4. K. L. Williamson, K. M. Masters, Macroscale and Microscale Organic					
	Experiments, 6 th Edition, Cengage Learning, 2010				
	5. R. K. Bansal, Laboratory Manual in Organic Chemistry, New Age				
	International, 5 th Edition, 2016.				
	6. S. Delvin, Green Chemistry, Sarup& Sons, 2005.				
	7. O. R. Rodig, C. E. Bell Jr., A. K. Clark, Organic Chemistry Laboratory				
	Standard and Microscale Experiments, Saunders College Publishing,				
	3 rd edition, 2009.				
	8. J. Mohan, Organic Analytical Chemistry, Narosa Publishing House,				
	2014.				

Course Code: CHHE-411

Title of the Course: Practical Course in Pharmaceutical Chemistry- I

Number of Credits: 02Total Hours: 60Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry practical courses at graduate l		
for the	or must have cleared change of discipline entrance test conducted by Goa		
course	University.		
Course	1. To acquire hands on training in laboratory techniques.		
Objective:	2. To understand organic synthesis with reference to me compound preparations.	dicinal	
Course Outcome	 Students will be able to understand the theoretical concep practical applications. Students will be able to handle analytical instruments like U spectrophotometer and carry out drug analysis. 		
Content:		Hrs	
1) Qualitative (1) Purified	and Quantitative tests of (Any 1) Water as per IP Monograph on as per IP Monograph	10	
		08	
forms):	ophotometric Assay of the following drugs (in different dosage (4 x 4= 16) (Any 4) Meloxicam, Salbutamol, Ofloxacin, Isoniazid, Diazepam, Acyclovir, nidazole,	16	
4) Synthesis of f	Collowing bioactive or drug molecules (2x3=6 hours) Any 2	06	
a) b)	3-Acetylcoumarin 2-Phenylbenzimidazole 2,3-Diphenyl Quinoxaline		
5) Multistep s a) Flave	ynthesis (Any one) one from 2-hydroxyacetophenone cetamol from Acetanilide	08	
6) Dissolution e	experiment:	06	
	dissolution rate of sustained release Theophylline tablets IP.		
7) High Perform To develop an	nance liquid Chromatographic experiment: nd validate the analytical method of any one drug using high uid chromatography.	06	
Pedagogy	Pre-lab and Post-lab exercises. Demonstrations of experiments. Explanation of procedures.		

References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford,
/Readings	Vogel's Textbook of Practical Organic Chemistry, 5 th Edition,
	Prentice Hall; 2011.
	2. K. A. Connors, <i>Text book of Pharmaceutical analysis</i> , 3 rd Edition,
	Wiley Interscience Publication, 1990.
	 3. J. Bassett, J. Mendhan, R. C. Denny, <i>Vogel's Text book of quantitative chemical analysis</i> revised by G.H. Jeffery , 6th Edition, Pearson Education Publication, 2007. 4. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia.
	5. J. E. F. Reynolds, <i>Martindale-The Extra Pharmacopoeia</i> , 30 th Edition, Pharmaceutical Press, London, 1993.
	6. J. Moini, <i>Pharmaceutical Laboratory Procedures</i> , 1 st Edition, Cengage Learning India Pvt. Ltd., New Delhi, 2010.

Course Code: CHHE-412

Title of the Course: Practical Course in Pharmaceutical Chemistry-II

Number of Cred	its: 02 Total Hours: 60 Effective from AY: 2022-2	3
Prerequisites	Students should have studied chemistry practical courses at graduate l	
for the	or must have cleared change of discipline entrance test conducted by Goa	
course	University.	
Course	1. To acquire hands on training in laboratory techniques.	
Objective:	2. To understand organic synthesis with reference to medicinal con	nnound
Objective.	preparations.	ipound
Course	1. Students will be able to understand the theoretical concepts and pr	actical
Outcome	applications.	
	2. Students will be able to handle analytical instruments like U	V-VIS
	spectrophotometer and carry our drug analysis.	
Content:		Hrs
1) Qualitative	and Quantitative tests of (Any 1)	10
	mol as per IP Monograph	
• •	as per IP Monograph	
	Assay of the following bulk drugs: $(2 \times 4 = 8)$ Any 2	08
_)		
a) Chloran	nphenicol capsules IP	
,	nide injection IP	
c) Ketopro		
d) Phenyto		
	photometric Assay of the following drugs	08
· •	rent dosage forms): $(4 \times 2 = 8)$ Any 2	00
	cid, Furosemide, Chloramphenicol	
4) Synthesis of	f following bioactive or drug molecules : $(2 \times 4 = 8 \text{ hours}) \text{ Any } 2$	08
	a) Warfarin	
1	b) 2-(<i>p</i> -Chlorophenyl)benzoxazole	
	c) Monastrol	
	d) Nitazoxanide	
5) Dissolution e	xperiment:	06
	te study of sustained release Diclofenac tablets IP.	
	Chromatographic experiments on Pharmaceuticals (Any 1)	04
, ,	ify the given drug amongst the paracetamol, aspirin and caffeine	0-
	ith the help of thin layer chromatography and calculate its <i>Rf</i> value.	
	ntify the given sulpha drug among the sulphadiazine,	
,	ethoxazole and trimethoprim with the help of thin layer	
	ography and calculate its <i>Rf</i> value.	
-		1
chromate		06
chromate 7) High Perform	nance liquid Chromatographic experiment:	06
chromate 7) High Perform To den		06

8) Separation chromate	on of mixture of o-nitroaniline and p-nitroaniline using column ography.	06
9) Infrared	l Spectroscopic analysis	04
Demonstration	of Instrumentation and Interpretation of Representative Spectra	
(Any 1)		
a) To differentia	te between analgesic-NSAIDs :Aspirin, Ibuprofen, Paracetamol.	
b) To differentia	te between Acetophenone, p-Nitroacetophenone, Benzamide	
Pedagogy	Pre-lab and Post-lab exercises. Demonstrations of experiments. Explanation of procedures.	
References	1. A. I. Vogel, A. R. Tatchell, B. S. Furniss, A. J. Hannaford,	
/Readings	 Vogel's Textbook of Practical Organic Chemistry, 5th Edition, Prentice Hall; 2011. 2. K. A. Connors, Text book of Pharmaceutical analysis, 3rd Edition, Wiley Interscience Publication, 1990. 3. J. Bassett, J. Mendhan, R. C. Denny, Vogel's Text book of quantitative chemical analysis revised by G.H. Jeffery, 6th Edition, Pearson Education Publication, 2007. 4. Indian Pharmacopoeia., United States Pharmacopoeia, British Pharmacopoeia. European Pharmacopoeia. 5. J. E. F. Reynolds, Martindale-The Extra Pharmacopoeia, 30th Edition, Pharmaceutical Press, London, 1993. 6. J. Moini, Pharmaceutical Laboratory Procedures, 1st Edition, 	

Course Code: CHPE-411 Title of the course: Practical course in Physical Chemistry-I Number of Credits: 02 Total Hours: 60 Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry courses at graduate level or	
for the	have cleared change of discipline entrance test conducted by	Goa
course:	University.	
C	1. To develop experimental skills on basic lab techniques in physical	l
Course	chemistry	
Objective:	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills1. Students will able to explain various fundamental lab techniques.	
Course	 Students will able to explain various fundamental fab techniques. Students should be in a position to apply the knowledge for their 	
Outcome:	dissertation and research work.	
	Content	Hrs
Minimum	13 Experiments to be performed per Semester	30
	imental Experiments (any 7)	20
	he kinetics of hydrolysis of ethyl acetate and to determine a) Energy	
•		
	on b) Entropy of activation and c) Free energy change.	
	ine the order of reaction between potassium persulphate and	
potassium	iodide by graphical, fractional change and differential methods.	
3. To study	the three-component system such as acetic acid, chloroform;	
and water	and obtain tie line.	
4. To determ	ine the molecular weight of polyvinyl alcohol by viscosity	
measurem	ent.	
5. To study t	he electro-kinetics of rapid reaction between SO_4^{2-} and Γ in	
	s solution.	
-	ine the buffer capacity of acidic buffer solution.	
	nine the partial molal volume of ethanol-water mixture at a	
given tem	-	
0	re energy content of various types of plastics using bomb	
calorimetr		
	ine number average molecular weight of a polymer sample	
	direct titration method.	
10. To investigate basic hydrolysis of ethyl acetate at four different temperatures		
and find ou	at energy of activation	
Instrumen	tal Experiments (any 6)	
	nine the degree of hydrolysis of salt of weak base and strong	
	g conductometer.	20
		30

12. To de	etermine the dissociation constants of a tribasic acid (Phosphoric			
acid obta	acid obtain derivative plot to get equivalence point.			
13. To de	etermine formal redox potential of Fe ²⁺ /Fe ³⁺ and Ce ³⁺ /Ce ⁴⁺ system			
obtain der	rivative plot to get equivalence point.			
14.To study	y spectrophotometric titration of ferrous ammonium sulphate			
with pot	assium permanganate (or dichromate vs permanganate)			
15. To deter	mine Avogadro's number by improved electroplating.			
16.To deter	rmine the zeta potential of colloidal system and investigate			
the effect	ct of different surfactants on stability of the colloids			
17.To ver	rify the Kohlrausch's law for weak electrolyte by			
conducto	ometry			
18.To deter	rmine the transport numbers of Cu^{2+} and SO_4^{2-} ions in $CuSO_4$			
solution	by Hittorf's method.			
Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assignmen	nts /		
	presentations / lab hand-out /self-study or a combination of some of t	hese		
	can also be used. ICT mode should be preferred. Sessions should be			
interactive in nature to enable peer group learning.				
Text	1. A. Finlay & J.A. Kitchener, "Practical Physical Chemistry", Longm	nan.		
Books/	2. F. Daniels & J.H. Mathews, "Experimental Physical Chemistry",			
References	Longman.			
/ Readings	/Readings 3. A.M.James, "Practical Physical Chemistry", Longman.			
	4. D.P. Shoemaker & C.W. Garland, " <i>Experimental Physical Chemistry</i> ", McGraw-Hill.			
<u> </u>				

Course Code: CHPE-412 Title of the course: Practical course in Physical Chemistry-II Number of Credits: 02 Total Hours: 60 Effective from AY: 2022-23

Prerequisites	Students should have studied chemistry courses at graduate level or	[.] must
for the	have cleared change of discipline entrance test.	
course:		
~	1. To develop experimental skills on basic lab techniques in physica	.1
Course	chemistry	
Objective:	2. To acquire skills for data analysis and interpretation	
	3. To help the students to develop research skills1. Students will gain knowledge of various fundamental lab technique	100
Course	2. Students should be in a position to apply the knowledge for their	ues.
Outcome:	dissertation and research work.	
	Content	Hrs
Minimum 1	3 experiments to be conducted per Semester	35
	umental Experiments (any 8)	
	the radius of a molecule by viscosity measurements.	
	$\Delta G, \Delta H$ and ΔS of silver benzoate by solubility product method	
	ate the adsorption of oxalic acid by activated charcoal and test the	
-	Freundlich and Langmuir's isotherms.	
-	the molecular weight of a given polymer by turbidimetry	
	the rate of reaction between ethyl bromoacetate and sodium	
-	te kinetically.	
1	the the percentage composition of a given mixture of two liquids by	
	eter method.	
U U	the kinetics of hydrolysis of methyl acetate and to determine a)	
•	activation b) Entropy of activation and c) Free energy change.	
	e kinetics of the reaction between Potassium per sulphate ($K_2S_2O_8$),	
•	sium iodide (KI), and to determine a) Energy of activation b)	
	activation and c) Free energy change.	
	the order of reaction for hydrolysis of ethyl acetate by graphical,	
	change and differential methods.	
10.10 determi	ine the molecular weight of polystyrene by viscosity measurement.	
T	F	
	Experiments (any 5)	
	ine the relative strength of chloroacetic acid and acetic acid by	25
conductor	-	
	ine the degree of hydrolysis of salt of weak base and strong acid	
using cond	uctometry.	

- 13. To determine the composition of a mixture of acetic acid, dichloroacetic acid and hydrochloric acid by conductometric titration.
- 14. To determine the dissociation constants of monobasic acid and dibasic acid
- and obtain derivative plot to get equivalence point. 15. To determine the redox potential of Fe^{2+}/Fe^{3+} system by titrating it with standard K₂Cr₂O₇ solution.

16. To study the electrodeposition of metal.

Pedagogy	Mainly pre-laboratory exercises Seminars / term papers /assignments /
	presentations / lab hand-out /self-study or a combination of some of these
	can also be used. ICT mode should be preferred. Sessions should be
	interactive in nature to enable peer group learning.
Text	1. A. Finlay & J.A. Kitchener, "Practical Physical Chemistry", Longman
Books/	2. F. Daniels & J.H. Mathews, "Experimental Physical Chemistry",
References	Longman.
/ Readings	3. A. M. James, F. E. Prichard "Practical Physical Chemistry", Longman
/ Reddings	4. D.P. Shoemaker & C.W. Garland, "Experimental Physical Chemistry",
	McGraw-Hill.

Course Code: CHAE-411

Title of the Course: Practical Course in Analytical Chemistry - I

Total Contact Hours: 60 Number of Credits: **02**

Prerequisites	Students should have studied chemistry practical courses at graduate level	or
for the	must have cleared change of discipline entrance test conducted by Goa	
course:	University.	
Course	1. Introduction of various experimental techniques for analysis.	
Objectives:	2. Learning data analysis, handling and interpretation of spectra.	
Course Outcomes:	 Students will be able to explain how to determine an unknown concentr of solution. Students will use statistical methods to analyse data in laboratory. Students will be able to use different techniques for qualitative and quantitative estimation. 	ation
	Content	Hrs
13 experiments 7 shall be cond Unit 1: Statisti i. Calibrat ii. Calibrat		
	metry/ UV-Visible Spectrophotometry	9
i. Estimat ii. Estimat iii. Estimat iv. Simulta	ion of Iron from Pharmaceutical sample (capsule) by thiocyanate method ion of phosphoric acid in cola drinks by molybdenum blue method. ion of KNO ₃ by UV spectroscopy and $K_2Cr_2O_7$ by Visible spectroscopy neous determination and Verification of law of additivity of absorbances D_7 and KMnO ₄).	
	Spectrophotometry and AES/AAS/ICP Spectroscopy	9
i. Estimat ii. Estimat	ion of Na and K in food supplements or cosmetic products. ion of Pb in water sample by AES/AAS/ICP. ion of Fe and Al in Iron ore sample by AES/AAS/ICP.	,
Unit 4: Ion Ex	change Chromatography and High Pressure Liquid Chromatography	10
i. Separati ii. Separati iii. Separati	ion and Estimation of chloride and bromide. ion of Anthracene and Naphthalene using reverse phase chromatography ion of Benzaldehyde and Benzyl alcohol using normal phase tography	
	etric Titrations	10
	ion of Ca in pharmaceutical tablet.	_~
	ion of Al and Mg in antacid tablet.	
	5	1
iii. Estimat	ion of CaO in cement.	
	ion of CaO in cement. t Extraction and spectrophotometry	10

estimati	on by spectrophotometry.	
ii. Determi	nation of Ni as Dimethylglyoxime complex by spectrophotometry.	
iii. Determi	nation of Silver as ion association complex with 1,10-Phenanthroline and	
Bromop	yrogallol red.	
Unit 7: Interpr	retation Exercises	4
i. Thermal	studies: TG/DTA and Isothermal weight loss studies of various hydrated	
solids li	ke CuSO ₄ \cdot 5H ₂ O, Ca ₂ C ₂ O ₄ \cdot H ₂ O, Fe ₂ C ₂ O ₄ \cdot 2H ₂ O.	
ii. X-ray po	owder diffractometry: Calculation of lattice parameters from X-ray	
powder	pattern of cubic system such as NiMn ₂ O ₄ , CoFe ₂ O ₄ etc.	
iii. IR spect	ra of Urea, benzoic acid, Copper sulphate pentahydrate etc.	
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a combina	tion of
	some of these. Sessions shall be interactive in nature to enable peer group	
	learning.	
Text Books/	1. J. H. Kennedy, Analytical Chemistry Principles, Saunders College	
References /	Publishing, 2 nd Ed., 1990.	
Readings	2. G. D. Christian, Analytical chemistry, 5 th Ed., John Willey and Sons, 1994	
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar, Vogel's	
	Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson Education Asia	
	2009.	
	4. A. J. Elias, Collection of interesting chemistry experiments, University press,	
	2002.	
	5. R.A. Day & A.L. Underwood, <i>Quantitative Analysis</i> , 6 th Ed., Prentice Hall,	
	2001.	
	6. J. Kenkel, Analytical Chemistry for Technicians, 3 rd Ed., Lewis publish	ers,
	2002.	

Course Code: CHAE-412

Title of the Course: Practical Course in Analytical Chemistry - II

Number of Credits: 02

Total Contact Hours: **60**

Prerequisites for the course:	Students should have studied chemistry practical courses at a must have cleared change of discipline entrance test conduct University.	-
Course	1. Introduction of various experimental techniques for analysis	sis.
Objectives:	2. Learning data analysis, handling and interpretation of spec	ctra.
Course	1. Students will be able to standardize a material to determin	e an unknown
Outcomes:	concentration.	
	2. Students will use statistical methods to analyse data in lab	•
	3. Students will be able to use different techniques for qualit	ative and
	quantitative estimation.	
	Content	Hours
	ists of 7 units of experiments in various areas of Analytical ch	
_	which include at least 02 experiments from unit 1-6 and 01 exp	eriment from unit
7 shall be conduc		1 -
Unit 1: Statistics		9
	ration of selected Volumetric apparatus	
	ration of selected Laboratory instruments	
*	ration of standard solutions and standardisation.	0
Unit 2: Titrimet		8
	ardisation and estimation of Chloride using precipitation	
	on (Mohr's method)	
ii. Analy metho	sis of commercial caustic soda by neutralisation titrimetric	
EDTA		
	pectrophotometry and AES/AAS/ICP Spectroscopy	10
	ation of Na and K in food supplements or cosmetic products	
	flame photometer.	
	ation of chromium in water sample by AES/AAS/ICP.	
	ation of nickel, molybdenum in Hastelloy C-22 using	
	AAS/ICP.	
	product isolation and Ion Exchange Chromatography	9
	ion of cinnamaldehyde from cinnamon	
	ion of Caffeine from tea powder	
	ation and estimation of Cadmium and Zinc	10
	ble Spectrophotometry and High-Pressure Liquid	10
Chromatograph	•	
	n of KNO_3 and $K_2Cr_2O_7$ using UV- Visible spectroscopy	
-	n of Benzaldehyde and benzoic acid using reverse phase	
HPLC.		

iii. Quantification of naphthalene in a sample using reverse phase HPLC.			
Unit 6: Solver	nt Extraction and spectrophotometry	10	
	ophotometric determination of aspirin/phenacetin/ caffeine in		
-	blet using solvent extraction		
ii. Colorii	netric determination of iron with salicylic acid.		
iii. Determ	ination of copper in brass sample by colorimetry.		
Unit 7: Data	Interpretation Exercises	4	
I. NMR/	Mass spectra		
II. HPLC	and GC chromatograph		
III. XRD p	owder pattern of cubic systems		
IV. Therm	ogram of coordination compounds		
Pedagogy:	Prelab exercises / assignments / presentations / lab hand-out or a	a combination of	
	some of these. Sessions shall be interactive in nature to enable peer group		
	learning.		
Text Books/			
References /	References / Publishing, 2 nd Ed., 1990.		
Readings	2. G. D. Christian, <i>Analytical chemistry</i> , 5 th Ed., John Willey and Sons, 1994		
	3. J. Mendham, R.C. Denney, J.D. Barnes, M. Thomas, B. Sivasankar,		
	Vogel's Textbook of Quantitative Chemical Analysis, 6 th Ed., Pearson		
	Education Asia 2009.		
	4. J. Elias, <i>Collection of interesting chemistry experiments</i> , University press, 2002.		
	5. R.A. Day & A.L. Underwood, <i>Quantitative Analysis</i> , 6 th Ed., Prentice Hall, 2001.		
	 6. J. Kenkel, <i>Analytical Chemistry for Technicians</i>, 3rd Ed., Lewis publishers, 2002. 		

Course Code: CHHC-412Title of the course: Fundamentals of Pharmaceutical Chemistry-IINumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisite s for the	Should have studied Pharmaceutical Chemistry at Semester I.		
course:			
Course Objective:	 To learn major classes of drugs w.r.t. IUPAC nomenclature, struct and functional groups. To understand the SAR of selected drugs and their Mechanism of action. To get acquainted with the synthesis of selected drug molecules 		
Course Outcome:	 Students will be able to identify the examples in different class drugs. Students will be able to write IUPAC names and Structure of drug. Students will be in a position to understand the mechanism of act selected classes of drugs. The students will have a clear understanding of concepts on analysis. The students will be able to apply synthetic organic cherk knowledge in devising a synthesis for a drug. 	gs. ion of SAR	
	Content	Hrs	
Classification of Chemotherapeutic Drugs: Development of the following			
drugs including structure activity relationship (S.A.R.), mechanisms of			
U	action (MA), outline of synthesis (\$), chemical nomenclature, generic names		
(GN) and side effects (SE) (outline of synthesis only of those marked\$)			
	c and Adrenergic Agents, General Anaesthetics and		
Hypotensive agents			
Bethanechol\$	Classification of cholinergic agents: Drugs acting on cholinergic nervous system: Bethanechol\$, Methacholine\$, Neostigmine, Pyridostigmine, Parathion, Malathion, Atropine, Dicyclomine\$, Tropicamide\$, Papaverine,		
Classification of adrenergic agents, Drugs acting on adrenergic nervous system: Methyldopa (MA,\$), Guanethidine, Ephedrine, Amphetamine, Tranylcypromine, Pragyline, Norepinephrine, Epinephrine, Pronethalol, Propranalol\$, Atenolol\$, Metoprolol.(SAR)			

2. Drugs acting on the central nervous system:	
Hypnotics and sedatives: Chloral hydrate, Phenobarbital\$, Secobarbital, Thiopental\$, Nitrazepam, (SAR) Drugs acting as anticonvulsants: Phenytoin\$, phenacemide, Clonazepam, Phensuximide, Phenobarbital, (Classification of Barbiturates), Primidone, Carbamazepine\$. Psychotherapeutic agents: Phenothiazines such as Chloropromazine, Chlorodiazepoxide\$, Oxazepam, Diazepam\$, Imipramine, Nialamide, Tranylcypromine, Pargyline. CNS stimulants: Phenmetrazine, Nikethamide\$, Iproniazid, Picrotoxines, Tetrazole, Amphetamine.	12
3. Antihistaminics, antiemetic, antiulcer drugs, Drugs used in parkinsonism	
and Alzhemeier's:	
Diphenhydramine, Triprolidine, Cyclizine, Promethazine\$(SAR), Cimetidine, Omeprazole (MA), Ranitidine, Sumatriptan, Ondansetron. Drugs used in Parkinsonism: Benzotronine mesylate, Levodopa, Carbidopa, Amantadine hydrochloride. Drugs for Alzheimer's diseases: Serine, Velnacrine (MA), Aniracetam.	10
4. Cardiovascular drugs, antihypertensive agents, and antibiotics:	
Digitoxin, Quinidine, Procainamide, Verapamil. Antihypertensive agents which elicit their action through autonomous nervous system previously described under 1 and 2, Clonidine, Hydralazine, ACE inhibitors- Enalapril and related drugs vasodilators such as Nitroglycerine, Isoxsuprine, Nylidrin, Antibiotics: Penicillin and semisynthetic penicillin's and Cephalosporins, Amoxicillin, Cloxacillin, Streptomycin, Chloramphenicol, Tetracycline and derivatives, Erythromycin.	10
5. Analgesics, Antipyretics and Inflammatory agents:	
Analgesics, antipyretics and anti-inflammatory agents: Sodium salicylate, Acetaminophen\$, Phenacetin, Phenylbutazone, Oxyphenabutazone\$, Naproxen\$, Probenecid, Allopurinol, Profen, Diclofenac \$. Narcotic analgesic agents: Morphine, Codeine, Meperidine, Methadone, Dextropropoxyphene. Non-narcotic analgesic agents: Dextropropoxyphene Levallorphan.	10
6. Neglected Tropical diseases. Background, overview of Neglected tropical	
diseases, (Poverty diseases) Human Schistosomiasis, African trypanosomiasis (Chagas), leishmaniasis, sleeping sickness. Nitroheterocycles, Benznidazole, Nifurtimox (\$, MA and side-effects)	06
Pedagogy Mainly lectures and tutorials. Seminars / term papers /assignme	
presentations / self-study or a combination of some of these can al	lso be

	used. ICT mode should be preferred. Sessions should be interactive in
	-
	nature to enable peer group learning.
Text	1. D. A. Williams & T. L. Lemke, Foye's principles of medicinal chemistry
Books/Ref	5 th edition, Lippincott Williams and Wilkins, 2006.
erences /	2. J. M. Beale & J. M. Block, Wilson & Gisvold's Text book of Organic
Readings	<i>Medicinal & Pharmaceutical Chemistry</i> , Lippincott Williams and Wilkins 2004.
	3. D. J. Abraham & D. P. Rotella, Burger's Medicinal Chemistry Drug
	Discovery and Development, 7 th edition, John Wiley & Sons N.Y, 2010.
	4. D. Shriram, P. Yogeshwari, <i>Medicinal Chemistry</i> , Pearson Education 2007.
	5. G. L. Patrick: <i>Introduction to Medicinal Chemistry</i> , Oxford University Press, UK. 6 th edition, 2017.
	6. D. Lednicer & L. A. Mitscher, The Organic Chemistry of Drug Synthesis. (6 volume set) III. John Wiley & Sons, 2005.
	7. H. Singh & V. K. Kapoor, <i>Medicinal and Pharmaceutical Chemistry</i> , Vallabh Prakashan, 2010.
	8. G. R Chatwal, <i>Medicinal Chemistry</i> (<i>Organic Pharmaceutical Chemistry</i>), Himalaya Publishing house, 2002.

Course Code: CHHC-413

Title of the course: Drug Product Formulation, Development and Manufacture

Number of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisite	Should have studied Pharmaceutical Chemistry at Semester I.		
s for the			
course:			
	1. To understand the concept of drug dosage forms, typ	bes of	
Course	formulations and pilot plant processes.		
Objective:	2. To study the drug formulation development with sp	pecific	
	examples.		
	1. Students should will be able to formulate APIs.		
Course	2. Students will be able to apply this knowledge for formulation		
Outcome:	experiments in laboratory.		
	3. Students will be able to evaluate formulations qualitatively.		
	Content	Hrs	
1. Introducti	on and Classification:		
Introduction t	to drugs, Dosage Forms & Drug Delivery system – Definitions of		
Common ter	ms. Development of dosage forms: Four stage development		
including pro	including preformulation. Preformulation studies, objectives, factors to be		
	tudy protocol, including prototype development, scale up studies	15	
	and commercialization. For example analysing polymorphs using ultraviolet,		
	infra-red, solid state NMR, DSA-DTA and X-Ray Crystallography. Drug		
	nd control, pharmacopoeias-formularies, sources of drug, drug		
U			
	, routes of administration of drugs products their advantages and		
0	, need for a dosage form, classification of dosage forms & brief		
description, study of excipients.			
2. Pilot plant	2 Pilot plant		
•			
Scale up techniques, Benefits of pilot plant- Broad guidelines of process			
development. General Consideration. Industrial manufacturing method and flow		15	
charts of sulphamethoxazole, Rifampicin, Chloramphenicol maleate,			
Actinobolin, I	Actinobolin, BTZO43, Piperaquine, Propranolol hydrochloride.		

3. Pharmac	eutical manufacturing operations	
operations granulation,	sion on unit operations and types of equipments/ machines used. Unit like size reduction, mixing/blending, drying, compression , coating etc. Three most frequently used unit operations within eutical manufacturing, that includes chromatography, virus filtration,	15
*		
-	al flow filtration (TFF), Quality by design (QbD): Fundamentals of	
-	cal quality by design, identification of critical quality attributes,	
	terial attributes, critical process parameters and quality risk	
managemen		
4. Dosage f	forms-formulation components, manufacturing and QC	
preparation, etc. Solid do pastilles, lo preparations and disadva	Types of dosage forms: Liquids-monophase & biophase including ENT preparation, sprays. Semisolid eg. Ointment, creams, gels, liniment, paste, lotion etc. Solid dosage forms eg. Tablets-Types of tablets, capsules, granules, powders, pastilles, lozenges, Sterile dosage forms eg. Injectables and ophthalmic preparations. Suppositories etc. Routes of drug administration, their advantages and disadvantages. Details pertaining to manufacturing processes for variety of dosage forms as listed above. Quality control evaluation of the dosage forms for assurance.	
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignme	ents /
1 00008085	presentations / self-study or a combination of some of these can a used. ICT mode should be preferred. Sessions should be interact	lso be
	nature to enable peer group learning.	
Text Books/Ref erences /	1. L. V. Allen Jr., N. G. Popovich, H. C. Ansel, <i>Ansel''s pharmace</i> <i>dosage forms and drug delivery systems</i> , Lippincott Williams & W 2005.	
Readings	2. R. K. Khar, <i>Lachman/Lieberman's The Theory and Practice of Indu</i> <i>Pharmacy</i> , 4 th Edition, CBS Publishers & Distributors, 2020.	ıstrial
	3. G. Banker, <i>Modern Pharmaceutics</i>, Marcel Dekker, Inc, 2002.4. S. J. Carter, <i>Dispensing for Pharmaceuticals students</i>, CBS Public	ishers
	& Distributors, Delhi, 2007.	
	5. J. P. Remington, <i>Remington's Pharmaceuticals Sciences</i> , Publishers, 1990.	Mack
	6. M. E. Aulton, <i>Pharmaceutics Science of Dosage forms and d</i> Kevin Taylor Elsevier, Health Sciences Division, 2001.	esign,

Course Code: CHHC-414Title of the course: Drug Design, Discovery and DevelopmentNumber of Credits: 04Total Hours: 60Effective from AY: 2022-23

Prerequisite s for the course:	Should have studied Pharmaceutical Chemistry at Semester I.		
Course Objective:	 To make the students well versed with theories of drug action. To make the students understand the Structure Activity Relationship studies citing various examples. To acquaint the students with the concepts of drug designing by molecular modelling. To introduce various terms involved in patenting and IPR. 		
Course Outcome:	 Students will be able to explain the theories of drug action. Students will have a clear understanding of concepts on analysis and will be able to apply Quantitative Structure Ac Relationship knowledge in drug designing. Students will be able to analyze the effect of different funct groups on the biological activity of drugs. The students will be able to illustrate an example of drug design by molecular modelling. The students will be able to explain the terms in patents. <i>Content</i> 	tivity tional	
1. Introduction	1. Introduction to Drug design, Lead compounds and Pro-drug Concept. Hrs		
Development of new drugs: Introduction, procedure followed in drug design, the search for lead compounds, molecular modification of lead compounds, prodrugs and soft drugs, prodrug; introduction, prodrug formation of compounds containing various chemical groups, multiple prodrug formation, soft drugs; design of soft drugs.			
2. SAR and Q	SAR Studies in drug discovery		
Structure-Activity Relationship (SAR): Factors effecting bioactivity, resonance, inductive effect, isosterism, bioisosterism, spatial considerations, biological properties of simple functional groups. 4-5 illustrative examples depicting structural activity relationship studies. Theories of drug activity, occupancy theory, rate theory, induced-fit theory. Quantitative structure-activity relationship (QSAR): history and development of QSAR, drug receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables, quantitative models.			

3. QSAR Approaches in drug designing and modern methods in discovery Hansch analysis- Advantages and drawbacks. Free-Wilson analysis, Advantages and drawbacks. Their application, relationship between Hansch and Free-Wilson analysis (the mixed approach), non-linear relationship, Introduction to other QSAR approaches- Free Topliss Method-Postulates and Illustration. Introduction to molecular modelling using computers and docking, uses of molecular modelling manual use, further computer programming.		
Structure- deactivation active site w Enzyme Inh directed irre	ag of Enzyme Inhibitors as drugs based drug design: Process of structure based drug design, n of certain drugs necessary for T cell functioning, determination of the with special reference to chymotryspin, design of inhibitors. Design of nibitors, 9-alkylpurines, 9-mercaptopurines and allopurines, active site eversible enzyme inhibition, suicide enzyme inactivators.	12
High throu Intellectual trademarks, in Pharmac regional ag	ment of New drugs ughput screening. Drug Design software's and its applications. property rights, patents, industrial designs, geographical indications, trade secrets. Patentable inventions. Patentable drugs. Role of patents ceutical industry. Trade related aspects (TRIPS), international & reements. Patent writing for drug designed. Examples of new drugs 5 examples with one designing strategy)	12
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignme presentations / self-study or a combination of some of these can als used. ICT mode should be preferred. Sessions should be interaction nature to enable peer group learning.	so be
Text Books/Ref erences / Readings	 S. S. Pandeya and J. R. Dimmock, An Introduction to Drug Design Age International (P) Ltd. Publishers, 2007. M. E. Wolff., Burger's Medicinal Chemistry and Drug Discovery, V (Ch 9 and 14), John Wiley and Sons, New York, 1997. Alen-Gringauz, Introduction to Medicinal Chemistry, 1st edition, W VCH,1996. D. Lednicer and L. A. Mitscher, The Organic Chemistry of Drug Synthesis, Vol. I to V, John Wiley, 2005. Alen-Gringauz, Introduction to Medicinal Chemistry, Wiley-VCH, 7 R.B. Silverman, Organic Chemistry of Drug design and Drug actio edition, Academic Press, 2014. A. Leach, Molecular Modelling: Principles and applications, 2nd ed Pearson India, 2001. Norman Bailey, Statistical methods in Biology, 3rd edition, Cambrid University Press, 1995. P. Krogsgaard-Larsen, U. Madsen, T. Liljefors A Textbook of Drug 	Yol I iley- 1997. <i>n</i> , 3 rd ition,

Design and Development, 2 nd edition, CRC Press, 1996.
10. G. Jolles and R. H. Wooldridge, Drug Design-Fact or Fantasy,
Academic Press, 1984.
11. E. B. Roche, Design of Biopharmaceutical properties through prodrug
and analogs, Am. Pharm. Assoc. Academy of Pharm. Sci., 1977.
12. G. L. Patrick, An Introduction to Medicinal Chemistry, 2 nd edition,
(Indian edition), Oxford University Press, 2001
13. N.R. Subbaran, What everyone should know about Patent, Pharma
Book Syndicate, 2005.
14. Current Patent Acts of various countries.
15. P. W. Grubb, Patents for Chemicals, Pharmaceuticals &
<i>Biotechnology</i> , 4 th edition, Oxford University Press, 2005.

Course Code: CHHC-415 Title of the course: Biopharmaceutics and Pharmacokinetics Number of Credits: 04 Total Hours: 60 Effective from AY: 2022-23

vulliber of Clear	15. 04 10tal 110t		2022-23
Prerequisite s for the	Should have studied I	Pharmaceutical Chemistry at Semester I.	
course:			
Course Objective:	Drug metaboli	MET. Drug absorption drug distribution E lism and excretion. bioavailability is important in understand drug product.	U
Course Outcome:	1. A student will	l be able to relate drug absorption to bioa l be able to get an in depth knowledge of	•
		Content	Hr
1 Introduction	n. Definitions ADMI	E concentration time profile platting the	data

1. **Introduction:** Definitions, ADME, concentration time profile, plotting the data, different fluid compartments and blood flow rate compartment models, biological half life, elimination rate constant. Biopharmaceutics and pharmacokinetics in drug research.

2. Drug Absorption, Dissolution and Distribution

GIT Absorption of drugs: Mechanism, physico-chemical, biological and pharmaceutical factors affecting drug absorption through GIT. Techniques for the GIT absorption assessment. mechanisms of drug absorption, factors affecting drug absorption: Biological, physiological, physico-chemical and pharmaceutical. Noyes-Whitney's dissolution rate law, study of various approaches to improve dissolution of poorly soluble drugs, In-vitro dissolution testing models, In-vitro-in-Vivo correlation. Factors affecting drug distribution, volume of distribution, protein binding – factors affecting, significance and kinetics of protein binding.

12

3. Drug Metabolism and Excretion

Metabolism of drugs, Xenobiotics, Drug metabolizing organs and enzymes (microsomal & nonmicrosomal), Chemical pathways - Phase I reactions (Oxidative, reductive and hydrolytic reactions) and Phase II reactions (Conjugation), Significance of cytochrome P₄₅₀ oxidation – reduction cycle, Factors affecting biotransformation of drugs. Renal excretion – Glomerular filtration, Active tubular secretion, Active (or) passive tubular reabsorption. Factors affecting renal excretions of drugs. Non renal excretions – Biliary, pulmonary, salivary, mammary, skin/dermal, gastrointestinal and genital excretions of drugs (Any two types).

4. Bioavaila	ability and Bioequivalency studies	
requirement excretion c equivalence bioavailabil	and considerations in bioavailability studies, Definitions, federal ts, methods of determination of bioavailability using blood and urinary data. Protocol design for bioavailability assessment. Concept of e, Methods for bioequivalence determination. Measurements of ity, Determination of the rate of absorption, Bioequivalence studies and ance. Biopharmaceutical classification of drugs, Importance of euticals.	12
5. Pharmac	okinetics:	
binding, det reciprocal), Pharmacoki one/ two conto to rapid int Determinati methods. M Michaelis-M Physiologic Theory; Ap Miscellaneo pharmacoki	tissue binding: Factors affecting protein binding, kinetics of protein termination of rate constant and different plots (direct, scatchard and Implication of protein binding on pharmacokinetic parameters. netic characterization of drugs: Pharmacokinetics of drugs following mpartment open models with first order elimination kinetics as applied travenous injection, Intravenous transfusion and oral administration. on of absorption rate constant using Wagner-Nelson, Loo Riegelman Non Linear Pharmacokinetics: Various causes of non-linearity, Menten kinetics, In-vivo estimation of Km and Vm. Case studies. pharmacokinetics models: Mean Residence Time; Statistical Moment opplication and limitations of physiologic pharmacokinetic models. bus Topics: Chronopharmacokinetics, Drug toxicity and forensic netics, kinetics of maternal-fetal drug transfer, pharmacokinetics v/s gical/ clinical response, metabolic kinetics.	16
Pedagogy	Mainly lectures and tutorials. Seminars / term papers /assignme	nts /
	presentations / self-study or a combination of some of these can als used. ICT mode should be preferred. Sessions should be interaction nature to enable peer group learning.	so be ve in
Text	1. M. Gibaldi, Biopharmaceutics and Clinical Pharmacokinetics	, 4 th
Books/Ref erences / Readings	 edition, Philadelphia, Lea & Febiger, 1991. 2. D.M. Brahmankar & Sunil B. Jaiswal, <i>Biopharmaceutics Pharmacokinetics: A Treatise</i>, Vallabh Prakasan, Pitambura, I 1998. 3. L Sharjel. & A. B. C. Yu, <i>Applied Biopharmaceutics Pharmacokinetics</i>, 2nd edition, Connecticut, Appleton Century C 1985. 	Delhi, and
	4. J. Swarbrick., Lea & Febiger, Current Concepts in Pharmaceu Sciences: Biopharmaceutics, Philadelphia, 1970.	
	 H. M. Abdou, <i>Dissolution, Bioavailability and Bioequivalence</i>, I Publishing Company, Pennsylvania, 1989. R. E. Notari, <i>Biopharmaceutics and Clinical Pharmacokinetics</i> 	
	<i>Introduction</i> , 4 th edition, Marcel Dekker Inc, New York and E 1987.	

7. J. G. Wagner and M. Pernarowski, Biopharmaceutics and Relevant

<i>Pharmacokinetics</i> , 1 st edition, Drug intelligence Publications, Hamilton,
Illionois, 1971.
8. J. Swarbrick, J. C. Boylan, Encyclopedia of Pharmaceutical
<i>Technology</i> , Vol. I, 2 nd edition, Marcel Dekker Inc, New York, 2002.
9. S. K. Niazi, Textbook of Biopharmaceutics and Clinical
Pharmacokinetics, BSP Books Private Limited, 2010.
10. Niazi, S. K., Handbook of Bioequivalence Testing, 1st edition, CRS
Press, 2007.

ANNEXURE-III Programme: M. Sc. Chemistry (Skill Based Course)

Course Code:- CHCS-501

Title of the Course: Laboratory safety, first aid and waste management (A course on transferable life skills)

Number of Credits: 02

Total Hours: 30

Effective from AY: 2022-2023

Prerequisites for the Course:	Should have studied B. Sc.	
Course	1. Study of various concepts related to laboratory and industrial safety.	
Objective:	2. Study of various methods and techniques for First aid.	
	3. Study of various methodologies of waste management.	
Course	1. Students will be in a position to understand how to work safely while handling chemicals in laboratory and indu	ustries.
Outcome:	2. Students will be in a position to help with First aid in case of accidents.	
	3. Students will be in a position to handle waste management.	
	Content	Hours
1. Laboratory safety. 4 1.1. Responsibilities in laboratory 9 - Purpose and responsibilities 8asic laboratory safety practices - Basic laboratory safety practices 1 1.2. Chemical Managements 1 - Introduction to chemical inventory and material safety data sheet 1 - Chemical storage and chemical labelling 1 - Transportation of chemicals in laboratory 1 - Special chemical hazards 1 1.3. Introduction to Personal protective equipments. 1 - Eye protection, face protection, hand protection, head protection, foot protective clothing, respiratory protection and hearing protection. 1 1.4. Safe handling of glasswares 1		4
 Fire Safety: Chemistry of - Fire Tetrah Combustion 	of Fire edron	4

- Flame	
-Premixed and Diffusion Flame, Practical Examples of Premixed Flames and Diffusion Flames	
- Ignition	
- Self Heating and Spontaneous Combustion, Smoldering	
- Stages in a Fire	
- Heat Transfer	
- Fire Hazards of Materials	
- Sources of Information on Hazardous Materials	
2.2. Fire Extinguishment	
- Classifications of Fires	
- Extinguishing Agents	
-Water, Carbon Dioxide, Halogenated Agents / Clean Agents, Dry Chemicals, Foam Extinguishing	
Agents, Combustible Metal Extinguishing Agents, Kitchen Fires	
2.3. Introduction to Fire Extinguishers	
-Fire Extinguisher Use in The Workplace	
-Maintenance, Inspection, And Testing of portable fire extinguishers	
3. Industrial Safety.	7
3.1. Risk, Hazard, types of hazards	
-Introduction to engineering controls and administrative controls	
3.2. Safety in industry	
- Safe/Unsafe Condition, Safe/Unsafe Acts, Near Miss	
 Risk Assessment (Procedure and protocols with example) 	
3.3. Hazardous Chemical Waste	
- Types of Waste, Waste minimization	
- Waste Management, segregation and disposal	
3.4. Demonstration	
- Mock fire drill	
- Mock evacuation drill	
- Safety audits	
4. Hygiene and Occupational safety	5
- Introduction to Occupational Safety and Health, occupational hygiene	
- Basics of Ergonomic; Ergonomic disorders and preventive measures for improved health and safety	
- Selecting appropriate ergonomic chair, manual material handling	

- Musculoskelet	al exercises for lab personnel	
- Need for Hygie	ne and types of Hygiene (demonstration)	
5. Basic First Ai	d	5
5.1. Introductio	n to First Aid	
- Origin, aim a	and scope of first aid, Overview of the human body	
5.2. First aid eq	uipment	
- Contents of	the first aid box	
- Role and res	ponsibilities of a first aider	
- Assessing the	e situation and acting safely, effectively and promptly in an emergency	
5.3. Emergency	care	
- Assessing the	e Victim: primary survey, secondary survey, head-to-toe examination,	
monitoring	vital signs	
- use of eyewa	ash and showers for chemical spillage	
- Cardiopulmo	onary Resuscitation (CPR)	
- Airway Obsti	ructions	
- Controlling B	Bleeding	
- Managing ur	nconscious casualty: checking and monitoring breathing and circulation, life-	
saving priorit	ties for unconscious adults, unconscious child, unconscious infant.	
5.4. Protocols fo	r Common injuries and their immediate care for different emergencies	
- Shock, Wour	nds and soft tissue Injuries, Burns, Head and spinal Injuries, Chest, Abdominal and Pelvic	
Injuries, Bone, Jo	pint and Muscle Injuries, Extremity Injuries and Splinting, Poisoning, Bites and Stings	
Sudden illness, [Drowning, hyperventilation, asthma, Cold and heat emergencies, Electrical	
Incidences, chok	king in adults and infants.	
6. Sewage Trea	tment	5
6.1. Introduction	n to the waste treatments, Types of waste: Solid, Liquid and Gaseous	
- Environmental laws: The water (Pollution and control of pollution) Act, 1974		
6.2. General cha	racteristics of waste: Liquid waste - Electrical conductivity, pH, COD, BOD, TS	
and TDS, tot	al suspended solids, total volatile solids, chlorides, sulphates, oil & grease.	
6.3. Waste Wate	er Treatment Technologies: A. Primary treatment methods B. Secondary	
treatment m	nethods and C. Tertiary treatment methods	
- Sludge dispo	osal: Methods of sludge disposal. Sources and effects of sludge on environment.	
6.4. Visit to Sew	age treatment plant.	
Pedagogy	Lectures & tutorials. Seminars / assignments / presentations / demonstrations / self-study or a combination o	f some of
	these could also be used.	

References	1. C. C. Fevzi and I. Adnan, Laboratory safety handbook, 1 st Edition, 2016, Sabanci University.
/Readings:	2. Laboratory safety manual, Environmental Health and Safety Department, University of Washington, December
	2021 Edition. (<u>www.ehs.washington.edu)</u>
	3. D. Philpott, Fundamentals of Fire Protection for the Safety Professional, 3 rd Edition, 2022,
	Bernan Press.
	4. Indian Standard- 2190:2010, Selection, Installation and Maintenance of First-Aid Fire Extinguishers — Code of
	Practice (Fourth Revision) (http://tricone.co.in/Downloads/selection,installation_and_maintenance_of_first-
	Aid_Fire_Extinguishers1_IS%201290.pdf)
	5. K. R. Muller, Chemical waste handling and treatment, 1 st Edition, 1986, Springer Verlag Berlin Heidelberg.
	6. Prudent practices in the laboratory: handling and management of chemical hazards, the National Academic Press,
	2 nd Edition, 2011, National Academies Press.
	7. K. Park, Park's text book of Preventive and Social Medicine, 19 th Edition, 2007, Banarsidas Bhanot publishers, India
	 NIEHS Health and Safety Guide to Laboratory Ergonomics. (https://ehs.uky.edu/docs/pdf/ohs_erg_ergonomics_guide_0001.pdf)
	 M. B. Pamela, Ergonomics Foundational Principles Applications and Technologies, 1st Edition, 2021, Taylor &
	Francis publisher.
	10. The authorized manual of St. John Ambulance, St. Andrew's Ambulance association and the British red cross society, First Aid manual, 9 th Edition, 2011, Dorling Kindersley.
	11. J. R. Krohmer, American college of emergency physicians First Aid manual, 5 th Edition, Dorling Kindersley.
	12. I. Clement, Text book on First Aid & Emergency Nursing, 1 st Edition, 2012, JP brothers.
	13. P. Jevon, Emergency care and First Aid for Nurses, A practical guide, 1 st Edition, 2007, Churchill Living Stone.
	14. M. N. Rao and A.K. Datta, Waste Water Treatment, 3 rd Edition, 2017, Oxford & IBH Publishing Co. Pvt. Ltd.
	15. M. J. Hammer, Sewage and waste treatment, 7 th Edition, 2012, Prentice Hall India Learning Private Limited.

ANNEXURE-IV (Bridge Course)

Programme: M.Sc. Chemistry

Course Code: CHCB-401 (for Part-I students)

Title of the course: Bridge Course in mathematical concepts for chemistry

Number of Credits: 01 Total Hours: 15 Effective from AY: 2022-23

Prerequisites	Should have studied B. Sc. (Chemistry)	
for the course:		
Course	To introduce mathematical concepts to the students of MSc Part-I	
Objective:	(Chemistry).	
Course	Students will be able to solve problems based on matrices, determina	ants
Outcome:	and, differential and integral calculus in MSc Chemistry.	
	Content	Hrs
1. Calculus fo	r thermodynamics and kinetics	08
i. Introduction	to Differentiation: Notation, Differentiating various functions,	
Differentiating	a Sum, Product Rule, Quotient Rule, Chain Rule, Partial	
Differentiation	exact and inexact differentials.	
ii. Introduction	to Integration: Notation, Rules for Integrals, Integrating various	
functions, Def	inite and indefinite Integrals.	
2. Matrices, E	eterminants and vector algebra:	07
i. Types of Ma	trices: Identity, reflection, rotation, inversion, distance matrix, Matrix	
Algebra, Matr	ix similarity transformation.	
ii. The Determ	inant, Minors and Cofactors, Inverse of a Matrix, Character of a	
matrix, Linear	algebra.	
iii. Vectors and	l molecular structure.	
Pedagogy	Mainly lectures and tutorials. Seminars/assignments/presentations/self	[-
	study or a combination of some of these can be used. ICT mode should	d be
	preferred. Sessions should be interactive to enable peer group learning	.
Text Books/	1. Robert G. Mortimer, Mathematics for Physical Chemistry, Elsevier,	,
References /	2013, 4 th Ed.	
References / Readings	2013, 4th Ed.2. James R. Barrante, Applied Mathematics for Physical Chemistry,	

Programme: M.Sc. Chemistry

Course Code: CHCB-402 (for Part-I students)

Title of the course: Bridge Course in organic chemistry

Number of Credits: 01 Total Hours: 15 Effective from AY: 2022-23

Prerequisites	Should have studied B. Sc. (Chemistry)	
for the		
course:		
	1. To understand various principles of organic chemistry.	
Course	2. To understand the importance of chirality in organic syntheses.	
Objective:	3. To understand stereoselective reactions.	
	4. To understand oxidation and reduction reactions.	
	1. Students will be able to explain basic stereochemistry.	
Course	2. Students will be able to apply knowledge of basic re	action
Outcome:	mechanisms in organic transformation.	
Ouicome.	3. Students will be able to apply basic concepts of oxidatio	n and
	reduction in organic synthesis.	
	Content	Hrs
1. Fundament	als of organic chemistry	08
Electron movement with arrows, half and double headed arrows (Cleavage of		
bonds: homolysis and heterolysis) in organic reaction mechanisms; inductive		
effect, electron	effect, electromeric effect, resonance and hyperconjugation, steric hindrance,	
hydrogen bor	hydrogen bonding; reactivity of organic molecules: nucleophiles and	
electrophiles; r	electrophiles; reactive intermediates: carbocations, carbanions and free radicals;	
strength of organic acids and bases; aromaticity: benzenoids and Hückel's rule.		
2. Stereochem	istry	03
Conformations with respect to butane and cyclohexane; interconversion of wedge		
formula, Newmann, Sawhorse and Fischer representations; CIP Rules: R/S		
configurations.		
3. Substitution	n, Elimination and addition reactions	02
Substitution and elimination reactions (S _N 1, S _N 2, E1 and E2), addition of		
different groups on olefins.		
4. Oxidation a	nd reduction reactions	02

Basic concepts and some examples.

Basic concept	ts and some examples.
Pedagogy	Mainly lectures and tutorials. Seminars/assignments/presentations/self-
	study or a combination of some of these can be used. ICT mode should be
	preferred. Sessions should be interactive to enable peer group learning.
Text Books/	1. D. Nassipuri, Stereochemistry of Organic compounds - Principles and
References	Application, Wiley Eastern Limited, New Academic Science Limited,
/ Readings	2013, 4th Ed.
	2. E. L. Eliel, Stereochemistry of carbon compounds, Tata MacGraw Hill
	Publishing Company Ltd. 1990
	3. J. March, Advanced Organic Chemistry: Reaction, Mechanism and
	Structure, Wiley, 2010, 4th Ed.
	4. J. Clayden, N. Greeves, S. Warren &Wothers, Organic Chemistry,
	Oxford University Press, 2012, 2nd Ed.
	5. I. L. Finar Stereochemistry and Chemistry of Natural products, ELBS,
	Longmans, Vol. 2, 1963, 3rd Ed.
	6. V. M. Potapov, Stereochemistry, MIR Publishers, Moscow, 1979
	7. E. S. Gould et al., Mechanism and structure in Organic Chemistry,
	1965
	8. F. A. Carey, Organic Chemistry, 2000, 4th Ed.
	9. S. H. Pine, Organic Chemistry, McGraw-Hill International Edn. 2010,
	5th Ed.
	10. F. A. Carey and R.J. Sundberg, Advanced Organic Chemistry, Vol. I
	& II. Plenum Press, 1977
	11. J. M. Harris & C.C. Wamser, Fundamentals of Organic Reaction
	Mechanisms, John Wiley & Sons. Inc. 1976
	12. F. M. Menger, D.J. Goldsmith & L. Mendell, Organic Chemistry, A
	concise approach, 1975, 2nd Ed.